ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02547
  4. Cited By
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data

6 July 2018
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
    3DPC
ArXivPDFHTML

Papers citing "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data"

50 / 334 papers shown
Title
Accelerating superconductor discovery through tempered deep learning of
  the electron-phonon spectral function
Accelerating superconductor discovery through tempered deep learning of the electron-phonon spectral function
Jason B. Gibson
A. Hire
P. M. Dee
Oscar Barrera
Benjamin Geisler
P. Hirschfeld
R. G. Hennig
13
4
0
29 Jan 2024
Fourier Transporter: Bi-Equivariant Robotic Manipulation in 3D
Fourier Transporter: Bi-Equivariant Robotic Manipulation in 3D
Hao-zhe Huang
Owen Howell
Dian Wang
Xu Zhu
Robin G. Walters
Robert W. Platt
29
22
0
22 Jan 2024
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt
  Tensor Products
Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products
Shengjie Luo
Tianlang Chen
Aditi S. Krishnapriyan
25
19
0
18 Jan 2024
A Characterization Theorem for Equivariant Networks with Point-wise
  Activations
A Characterization Theorem for Equivariant Networks with Point-wise Activations
Marco Pacini
Xiaowen Dong
Bruno Lepri
G. Santin
41
2
0
17 Jan 2024
Scalable Normalizing Flows Enable Boltzmann Generators for
  Macromolecules
Scalable Normalizing Flows Enable Boltzmann Generators for Macromolecules
Joseph C. Kim
David Bloore
Karan Kapoor
Jun Feng
Ming-Hong Hao
Mengdi Wang
37
7
0
08 Jan 2024
Diffusion-Driven Generative Framework for Molecular Conformation
  Prediction
Diffusion-Driven Generative Framework for Molecular Conformation Prediction
Bobin Yang
Jie Deng
Zhenghan Chen
Ruoxue Wu
DiffM
29
0
0
22 Dec 2023
SE(3)-Equivariant and Noise-Invariant 3D Rigid Motion Tracking in Brain
  MRI
SE(3)-Equivariant and Noise-Invariant 3D Rigid Motion Tracking in Brain MRI
Benjamin Billot
Neel Dey
Daniel Moyer
M. Hoffmann
Esra Abaci Turk
B. Gagoski
Ellen Grant
Polina Golland
3DPC
23
6
0
21 Dec 2023
Self-Supervised Detection of Perfect and Partial Input-Dependent
  Symmetries
Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries
Alonso Urbano
David W. Romero
24
1
0
19 Dec 2023
Higher-Order Equivariant Neural Networks for Charge Density Prediction
  in Materials
Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
Teddy Koker
Keegan Quigley
Eric Taw
Kevin Tibbetts
Lin Li
20
12
0
08 Dec 2023
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Derek Lim
Joshua Robinson
Stefanie Jegelka
Haggai Maron
71
16
0
04 Dec 2023
ShapeMatcher: Self-Supervised Joint Shape Canonicalization,
  Segmentation, Retrieval and Deformation
ShapeMatcher: Self-Supervised Joint Shape Canonicalization, Segmentation, Retrieval and Deformation
Yan Di
Chenyangguang Zhang
Chaowei Wang
Ruida Zhang
Guangyao Zhai
Yanyan Li
Bowen Fu
Xiangyang Ji
Shan Gao
3DPC
21
5
0
18 Nov 2023
Affine Invariance in Continuous-Domain Convolutional Neural Networks
Affine Invariance in Continuous-Domain Convolutional Neural Networks
A. Mohaddes
Johannes Lederer
18
1
0
13 Nov 2023
Density of States Prediction of Crystalline Materials via Prompt-guided
  Multi-Modal Transformer
Density of States Prediction of Crystalline Materials via Prompt-guided Multi-Modal Transformer
Namkyeong Lee
Heewoong Noh
Sungwon Kim
Dongmin Hyun
Gyoung S. Na
Chanyoung Park
21
5
0
24 Oct 2023
Symmetry-preserving graph attention network to solve routing problems at
  multiple resolutions
Symmetry-preserving graph attention network to solve routing problems at multiple resolutions
Cong Dao Tran
Thong Bach
Truong Son-Hy
31
0
0
24 Oct 2023
Learning Layer-wise Equivariances Automatically using Gradients
Learning Layer-wise Equivariances Automatically using Gradients
Tycho F. A. van der Ouderaa
Alexander Immer
Mark van der Wilk
MLT
47
12
0
09 Oct 2023
On Accelerating Diffusion-based Molecular Conformation Generation in SE(3)-invariant Space
Zihan Zhou
Ruiying Liu
Tianshu Yu
DiffM
30
0
0
07 Oct 2023
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie
  Algebras
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
40
1
0
06 Oct 2023
Ophiuchus: Scalable Modeling of Protein Structures through Hierarchical
  Coarse-graining SO(3)-Equivariant Autoencoders
Ophiuchus: Scalable Modeling of Protein Structures through Hierarchical Coarse-graining SO(3)-Equivariant Autoencoders
Allan dos Santos Costa
Ilan Mitnikov
Mario Geiger
Manvitha Ponnapati
Tess E. Smidt
Joseph Jacobson
DiffM
18
3
0
04 Oct 2023
AtomSurf : Surface Representation for Learning on Protein Structures
AtomSurf : Surface Representation for Learning on Protein Structures
Vincent Mallet
Souhaib Attaiki
M. Ovsjanikov
36
3
0
28 Sep 2023
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
LagrangeBench: A Lagrangian Fluid Mechanics Benchmarking Suite
Stefania Costantini
Gianluca Galletti
Fabian Fritz
Stefan Adami
Nikolaus A. Adams
40
13
0
28 Sep 2023
HydraScreen: A Generalizable Structure-Based Deep Learning Approach to
  Drug Discovery
HydraScreen: A Generalizable Structure-Based Deep Learning Approach to Drug Discovery
Alvaro Prat
Hisham Abdel-Aty
Gintautas Kamuntavicius
Tanya Paquet
P. Norvaisas
Piero Gasparotto
Roy Tal
23
2
0
22 Sep 2023
E(2)-Equivariant Graph Planning for Navigation
E(2)-Equivariant Graph Planning for Navigation
Linfeng Zhao
Hongyu Li
T. Padır
Huaizu Jiang
Lawson L. S. Wong
25
6
0
22 Sep 2023
Leveraging SE(3) Equivariance for Learning 3D Geometric Shape Assembly
Leveraging SE(3) Equivariance for Learning 3D Geometric Shape Assembly
Ruihai Wu
Chenrui Tie
Yushi Du
Yan Zhao
Hao Dong
28
19
0
13 Sep 2023
Molecular Conformation Generation via Shifting Scores
Molecular Conformation Generation via Shifting Scores
Zihan Zhou
Ruiying Liu
Chaolong Ying
Ruimao Zhang
Tianshu Yu
DiffM
29
2
0
12 Sep 2023
Mixup-Augmented Meta-Learning for Sample-Efficient Fine-Tuning of
  Protein Simulators
Mixup-Augmented Meta-Learning for Sample-Efficient Fine-Tuning of Protein Simulators
Jingbang Chen
Yian Wang
Xingwei Qu
Shuangjia Zheng
Yao-Chun Yang
Hao Dong
Jie Fu
15
0
0
29 Aug 2023
Leveraging Symmetries in Pick and Place
Leveraging Symmetries in Pick and Place
Hao-zhe Huang
Dian Wang
Arsh Tangri
Robin G. Walters
Robert W. Platt
27
14
0
15 Aug 2023
Rotation-Invariant Random Features Provide a Strong Baseline for Machine
  Learning on 3D Point Clouds
Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds
O. Melia
Eric Jonas
Rebecca Willett
OOD
3DPC
18
3
0
27 Jul 2023
Can Euclidean Symmetry be Leveraged in Reinforcement Learning and
  Planning?
Can Euclidean Symmetry be Leveraged in Reinforcement Learning and Planning?
Linfeng Zhao
Owen Howell
Jung Yeon Park
Xu Zhu
Robin G. Walters
Lawson L. S. Wong
36
1
0
17 Jul 2023
Geometric Neural Diffusion Processes
Geometric Neural Diffusion Processes
Emile Mathieu
Vincent Dutordoir
M. Hutchinson
Valentin De Bortoli
Yee Whye Teh
Richard E. Turner
DiffM
36
8
0
11 Jul 2023
Equivariant Single View Pose Prediction Via Induced and Restricted
  Representations
Equivariant Single View Pose Prediction Via Induced and Restricted Representations
Owen Howell
David M. Klee
Ondrej Biza
Linfeng Zhao
Robin G. Walters
28
4
0
07 Jul 2023
Learning Lie Group Symmetry Transformations with Neural Networks
Learning Lie Group Symmetry Transformations with Neural Networks
Alex Gabel
Victoria G Klein
Riccardo Valperga
J. Lamb
K. Webster
Rick Quax
E. Gavves
20
5
0
04 Jul 2023
Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis
Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis
T. Kuipers
Erik J. Bekkers
11
5
0
24 Jun 2023
EquiformerV2: Improved Equivariant Transformer for Scaling to
  Higher-Degree Representations
EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations
Yidong Liao
Brandon M. Wood
Abhishek Das
Tess E. Smidt
24
131
0
21 Jun 2023
3D molecule generation by denoising voxel grids
3D molecule generation by denoising voxel grids
Pedro H. O. Pinheiro
Joshua Rackers
J. Kleinhenz
Michael R. Maser
Omar Mahmood
Andrew Watkins
Stephen Ra
Vishnu Sresht
Saeed Saremi
DiffM
34
20
0
13 Jun 2023
TensorNet: Cartesian Tensor Representations for Efficient Learning of
  Molecular Potentials
TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials
Guillem Simeon
Gianni de Fabritiis
24
45
0
10 Jun 2023
Any-dimensional equivariant neural networks
Any-dimensional equivariant neural networks
Eitan Levin
Mateo Díaz
21
6
0
10 Jun 2023
Group Equivariant Fourier Neural Operators for Partial Differential
  Equations
Group Equivariant Fourier Neural Operators for Partial Differential Equations
Jacob Helwig
Xuan Zhang
Cong Fu
Jerry Kurtin
Stephan Wojtowytsch
Shuiwang Ji
AI4CE
47
28
0
09 Jun 2023
Scaling Spherical CNNs
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
19
13
0
08 Jun 2023
From Zero to Turbulence: Generative Modeling for 3D Flow Simulation
From Zero to Turbulence: Generative Modeling for 3D Flow Simulation
Marten Lienen
David Ludke
Jan Hansen-Palmus
Stephan Günnemann
DiffM
AI4CE
24
23
0
29 May 2023
Investigating how ReLU-networks encode symmetries
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
24
6
0
26 May 2023
Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural
  Networks
Learning Lagrangian Fluid Mechanics with E(333)-Equivariant Graph Neural Networks
Artur P. Toshev
Gianluca Galletti
Johannes Brandstetter
Stefan Adami
Nikolaus A. Adams
AI4CE
27
5
0
24 May 2023
Subspace-Configurable Networks
Subspace-Configurable Networks
Dong Wang
O. Saukh
Xiaoxi He
Lothar Thiele
OOD
30
0
0
22 May 2023
Knowledge-Design: Pushing the Limit of Protein Design via Knowledge
  Refinement
Knowledge-Design: Pushing the Limit of Protein Design via Knowledge Refinement
Zhangyang Gao
Cheng Tan
Stan Z. Li
23
15
0
20 May 2023
Clifford Group Equivariant Neural Networks
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
26
34
0
18 May 2023
Policy Gradient Methods in the Presence of Symmetries and State
  Abstractions
Policy Gradient Methods in the Presence of Symmetries and State Abstractions
Prakash Panangaden
S. Rezaei-Shoshtari
Rosie Zhao
D. Meger
Doina Precup
25
2
0
09 May 2023
KineticNet: Deep learning a transferable kinetic energy functional for
  orbital-free density functional theory
KineticNet: Deep learning a transferable kinetic energy functional for orbital-free density functional theory
Roman Remme
Tobias Kaczun
Maximilian Scheurer
A. Dreuw
Fred Hamprecht
30
9
0
08 May 2023
Geometric Latent Diffusion Models for 3D Molecule Generation
Geometric Latent Diffusion Models for 3D Molecule Generation
Minkai Xu
Alexander Powers
R. Dror
Stefano Ermon
J. Leskovec
DiffM
AI4CE
55
134
0
02 May 2023
DeepReShape: Redesigning Neural Networks for Efficient Private Inference
DeepReShape: Redesigning Neural Networks for Efficient Private Inference
N. Jha
Brandon Reagen
28
10
0
20 Apr 2023
$E(3) \times SO(3)$-Equivariant Networks for Spherical Deconvolution in
  Diffusion MRI
E(3)×SO(3)E(3) \times SO(3)E(3)×SO(3)-Equivariant Networks for Spherical Deconvolution in Diffusion MRI
Axel Elaldi
Guido Gerig
Neel Dey
MedIm
14
3
0
12 Apr 2023
Scale-Equivariant Deep Learning for 3D Data
Scale-Equivariant Deep Learning for 3D Data
Thomas Wimmer
Vladimir Golkov
H. Dang
Moritz Zaiss
Andreas K. Maier
Daniel Cremers
3DPC
MedIm
20
5
0
12 Apr 2023
Previous
1234567
Next