ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.02547
  4. Cited By
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data

6 July 2018
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
    3DPC
ArXivPDFHTML

Papers citing "3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data"

50 / 334 papers shown
Title
Equivariant neural networks for inverse problems
Equivariant neural networks for inverse problems
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
MedIm
AI4CE
6
26
0
23 Feb 2021
Shape-Tailored Deep Neural Networks
Shape-Tailored Deep Neural Networks
Naeemullah Khan
Angira Sharma
G. Sundaramoorthi
Philip H. S. Torr
3DV
17
0
0
16 Feb 2021
Rotation-Equivariant Deep Learning for Diffusion MRI
Rotation-Equivariant Deep Learning for Diffusion MRI
Philip Muller
Vladimir Golkov
V. Tomassini
Daniel Cremers
DiffM
MedIm
17
28
0
13 Feb 2021
Equivariant message passing for the prediction of tensorial properties
  and molecular spectra
Equivariant message passing for the prediction of tensorial properties and molecular spectra
Kristof T. Schütt
Oliver T. Unke
M. Gastegger
27
511
0
05 Feb 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
203
1,238
0
08 Jan 2021
LieTransformer: Equivariant self-attention for Lie Groups
LieTransformer: Equivariant self-attention for Lie Groups
M. Hutchinson
Charline Le Lan
Sheheryar Zaidi
Emilien Dupont
Yee Whye Teh
Hyunjik Kim
17
111
0
20 Dec 2020
Classification of Single-View Object Point Clouds
Classification of Single-View Object Point Clouds
Zelin Xu
Ke Chen
Kangjun Liu
Changxing Ding
Yaowei Wang
K. Jia
3DPC
20
8
0
18 Dec 2020
ATOM3D: Tasks On Molecules in Three Dimensions
ATOM3D: Tasks On Molecules in Three Dimensions
Raphael J. L. Townshend
M. Vögele
Patricia Suriana
Alexander Derry
Alexander Powers
...
Brandon M. Anderson
Stephan Eismann
Risi Kondor
Russ Altman
R. Dror
AI4CE
6
117
0
07 Dec 2020
What is a meaningful representation of protein sequences?
What is a meaningful representation of protein sequences?
N. Detlefsen
Søren Hauberg
Wouter Boomsma
8
111
0
28 Nov 2020
Equivariant Learning of Stochastic Fields: Gaussian Processes and
  Steerable Conditional Neural Processes
Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes
P. Holderrieth
M. Hutchinson
Yee Whye Teh
BDL
28
30
0
25 Nov 2020
Symmetry-Aware Actor-Critic for 3D Molecular Design
Symmetry-Aware Actor-Critic for 3D Molecular Design
G. Simm
Robert Pinsler
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
26
64
0
25 Nov 2020
Spherical convolutions on molecular graphs for protein model quality
  assessment
Spherical convolutions on molecular graphs for protein model quality assessment
Ilia Igashov
Nikita Pavlichenko
Sergei Grudinin
24
14
0
16 Nov 2020
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
A Wigner-Eckart Theorem for Group Equivariant Convolution Kernels
Leon Lang
Maurice Weiler
27
53
0
21 Oct 2020
Machine Learning Force Fields
Machine Learning Force Fields
Oliver T. Unke
Stefan Chmiela
H. E. Sauceda
M. Gastegger
I. Poltavsky
Kristof T. Schütt
A. Tkatchenko
K. Müller
AI4CE
25
886
0
14 Oct 2020
Physical invariance in neural networks for subgrid-scale scalar flux
  modeling
Physical invariance in neural networks for subgrid-scale scalar flux modeling
Hugo Frezat
G. Balarac
Julien Le Sommer
Ronan Fablet
Redouane Lguensat
AI4CE
29
44
0
09 Oct 2020
On the Universality of Rotation Equivariant Point Cloud Networks
On the Universality of Rotation Equivariant Point Cloud Networks
Nadav Dym
Haggai Maron
3DPC
27
78
0
06 Oct 2020
Group Equivariant Stand-Alone Self-Attention For Vision
Group Equivariant Stand-Alone Self-Attention For Vision
David W. Romero
Jean-Baptiste Cordonnier
MDE
18
57
0
02 Oct 2020
Physics-Constrained Predictive Molecular Latent Space Discovery with
  Graph Scattering Variational Autoencoder
Physics-Constrained Predictive Molecular Latent Space Discovery with Graph Scattering Variational Autoencoder
Navid Shervani-Tabar
N. Zabaras
BDL
DRL
13
3
0
29 Sep 2020
Robust Object Classification Approach using Spherical Harmonics
Robust Object Classification Approach using Spherical Harmonics
Ayman Mukhaimar
Ruwan Tennakoon
Chow Yin Lai
R. Hoseinnezhad
A. Bab-Hadiashar
3DPC
16
6
0
02 Sep 2020
Orientation-Disentangled Unsupervised Representation Learning for
  Computational Pathology
Orientation-Disentangled Unsupervised Representation Learning for Computational Pathology
Maxime W. Lafarge
J. Pluim
M. Veta
DRL
16
8
0
26 Aug 2020
Relevance of Rotationally Equivariant Convolutions for Predicting
  Molecular Properties
Relevance of Rotationally Equivariant Convolutions for Predicting Molecular Properties
Benjamin Kurt Miller
Mario Geiger
Tess E. Smidt
Frank Noé
16
75
0
19 Aug 2020
Rotation-Invariant Gait Identification with Quaternion Convolutional
  Neural Networks
Rotation-Invariant Gait Identification with Quaternion Convolutional Neural Networks
Bowen Jing
Vinay Prabhu
Angela Gu
John Whaley
9
2
0
04 Aug 2020
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning
Elise van der Pol
Daniel E. Worrall
H. V. Hoof
F. Oliehoek
Max Welling
BDL
AI4CE
13
155
0
30 Jun 2020
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey
M. Rath
A. P. Condurache
ViT
AI4CE
27
9
0
30 Jun 2020
Geometric Prediction: Moving Beyond Scalars
Geometric Prediction: Moving Beyond Scalars
Raphael J. L. Townshend
Brent Townshend
Stephan Eismann
R. Dror
6
7
0
25 Jun 2020
Disentangling by Subspace Diffusion
Disentangling by Subspace Diffusion
David Pfau
I. Higgins
Aleksandar Botev
S. Racanière
DiffM
DRL
11
36
0
23 Jun 2020
Spin-Weighted Spherical CNNs
Spin-Weighted Spherical CNNs
Carlos Esteves
A. Makadia
Kostas Daniilidis
19
68
0
18 Jun 2020
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks
F. Fuchs
Daniel E. Worrall
Volker Fischer
Max Welling
3DPC
45
664
0
18 Jun 2020
Embed Me If You Can: A Geometric Perceptron
Embed Me If You Can: A Geometric Perceptron
Pavlo Melnyk
M. Felsberg
Mårten Wadenbäck
3DPC
6
14
0
11 Jun 2020
Standardised convolutional filtering for radiomics
Standardised convolutional filtering for radiomics
A. Depeursinge
Vincent Andrearczyk
P. Whybra
J. V. Griethuysen
Henning Muller
Roger Schaer
M. Vallières
A. Zwanenburg
8
36
0
09 Jun 2020
Lorentz Group Equivariant Neural Network for Particle Physics
Lorentz Group Equivariant Neural Network for Particle Physics
A. Bogatskiy
Brandon M. Anderson
Jan T. Offermann
M. Roussi
David W. Miller
Risi Kondor
AI4CE
13
136
0
08 Jun 2020
Structure preserving deep learning
Structure preserving deep learning
E. Celledoni
Matthias Joachim Ehrhardt
Christian Etmann
R. McLachlan
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
AI4CE
13
43
0
05 Jun 2020
Computing Representations for Lie Algebraic Networks
Computing Representations for Lie Algebraic Networks
N. Shutty
Casimir Wierzynski
13
2
0
01 Jun 2020
Isometric Transformation Invariant and Equivariant Graph Convolutional
  Networks
Isometric Transformation Invariant and Equivariant Graph Convolutional Networks
Masanobu Horie
Naoki Morita
Toshiaki Hishinuma
Yushi Ihara
Naoto Mitsume
GNN
8
23
0
13 May 2020
3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis
3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis
Valentin Oreiller
Vincent Andrearczyk
Julien Fageot
John O. Prior
A. Depeursinge
8
1
0
28 Apr 2020
Theoretical Aspects of Group Equivariant Neural Networks
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
19
41
0
10 Apr 2020
The general theory of permutation equivarant neural networks and higher
  order graph variational encoders
The general theory of permutation equivarant neural networks and higher order graph variational encoders
Erik H. Thiede
Truong Son-Hy
Risi Kondor
19
35
0
08 Apr 2020
A Survey of Convolutional Neural Networks: Analysis, Applications, and
  Prospects
A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects
Zewen Li
Wenjie Yang
Shouheng Peng
Fan Liu
HAI
3DV
54
2,595
0
01 Apr 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
20
92
0
26 Mar 2020
Local Rotation Invariance in 3D CNNs
Local Rotation Invariance in 3D CNNs
Vincent Andrearczyk
Julien Fageot
Valentin Oreiller
X. Montet
A. Depeursinge
32
23
0
19 Mar 2020
A Rotation-Invariant Framework for Deep Point Cloud Analysis
A Rotation-Invariant Framework for Deep Point Cloud Analysis
Xianzhi Li
Ruihui Li
Guangyong Chen
Chi-Wing Fu
Daniel Cohen-Or
Pheng-Ann Heng
3DPC
114
109
0
16 Mar 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
100
127
0
11 Mar 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
40
846
0
06 Mar 2020
A Permutation-Equivariant Neural Network Architecture For Auction Design
A Permutation-Equivariant Neural Network Architecture For Auction Design
Jad Rahme
Samy Jelassi
Joan Bruna
S. M. Weinberg
10
45
0
02 Mar 2020
Generalizing Convolutional Neural Networks for Equivariance to Lie
  Groups on Arbitrary Continuous Data
Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi
Samuel Stanton
Pavel Izmailov
A. Wilson
17
316
0
25 Feb 2020
Set2Graph: Learning Graphs From Sets
Set2Graph: Learning Graphs From Sets
Hadar Serviansky
Nimrod Segol
Jonathan Shlomi
Kyle Cranmer
Eilam Gross
Haggai Maron
Y. Lipman
PINN
GNN
6
35
0
20 Feb 2020
Roto-Translation Equivariant Convolutional Networks: Application to
  Histopathology Image Analysis
Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Maxime W. Lafarge
Erik J. Bekkers
J. Pluim
R. Duits
M. Veta
MedIm
19
74
0
20 Feb 2020
On Learning Sets of Symmetric Elements
On Learning Sets of Symmetric Elements
Haggai Maron
Or Litany
Gal Chechik
Ethan Fetaya
22
132
0
20 Feb 2020
Attentive Group Equivariant Convolutional Networks
Attentive Group Equivariant Convolutional Networks
David W. Romero
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
22
89
0
07 Feb 2020
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao
Tolga Birdal
J. E. Lenssen
Emanuele Menegatti
Leonidas J. Guibas
Federico Tombari
3DPC
20
88
0
27 Dec 2019
Previous
1234567
Next