Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.02547
Cited By
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
6 July 2018
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
Re-assign community
ArXiv
PDF
HTML
Papers citing
"3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data"
50 / 334 papers shown
Title
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
The G-invariant graph Laplacian
E. Rosen
Paulina Hoyos
Xiuyuan Cheng
Joe Kileel
Y. Shkolnisky
11
1
0
29 Mar 2023
4D Panoptic Segmentation as Invariant and Equivariant Field Prediction
Minghan Zhu
Shizong Han
H. Cai
Shubhankar Borse
M. G. Jadidi
Fatih Porikli
3DPC
52
15
0
28 Mar 2023
Rethinking SO(3)-equivariance with Bilinear Tensor Networks
C. Shimmin
Zhelun Li
Ema Smith
3DPC
20
0
0
20 Mar 2023
Computing equivariant matrices on homogeneous spaces for Geometric Deep Learning and Automorphic Lie Algebras
V. Knibbeler
30
1
0
13 Mar 2023
Predicting Density of States via Multi-modal Transformer
Namkyeong Lee
Heewoong Noh
Sungwon Kim
Dongmin Hyun
Gyoung S. Na
Chanyoung Park
16
3
0
13 Mar 2023
Multi-Symmetry Ensembles: Improving Diversity and Generalization via Opposing Symmetries
Charlotte Loh
Seung-Jun Han
Shivchander Sudalairaj
Rumen Dangovski
Kai Xu
F. Wenzel
Marin Soljacic
Akash Srivastava
UQCV
39
1
0
04 Mar 2023
Deep Neural Networks with Efficient Guaranteed Invariances
M. Rath
A. P. Condurache
16
4
0
02 Mar 2023
Leveraging SO(3)-steerable convolutions for pose-robust semantic segmentation in 3D medical data
I. Díaz
Mario Geiger
Richard McKinley
3DPC
11
0
0
01 Mar 2023
Self-Supervised Category-Level Articulated Object Pose Estimation with Part-Level SE(3) Equivariance
Xueyi Liu
Ji Zhang
Ruizhen Hu
Haibin Huang
He-Nan Wang
Li Yi
3DPC
21
21
0
28 Feb 2023
General Rotation Invariance Learning for Point Clouds via Weight-Feature Alignment
Liang Xie
Yibo Yang
Wenxiao Wang
Binbin Lin
Deng Cai
Xiaofei He
Ronghua Liang
3DPC
16
2
0
20 Feb 2023
Geometric Clifford Algebra Networks
David Ruhe
Jayesh K. Gupta
Steven De Keninck
Max Welling
Johannes Brandstetter
AI4CE
18
33
0
13 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
28
79
0
07 Feb 2023
Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction
Zuobai Zhang
Minghao Xu
A. Lozano
Vijil Chenthamarakshan
Payel Das
Jian Tang
DiffM
19
19
0
28 Jan 2023
Modelling Long Range Dependencies in
N
N
N
D: From Task-Specific to a General Purpose CNN
David M. Knigge
David W. Romero
Albert Gu
E. Gavves
Erik J. Bekkers
Jakub M. Tomczak
Mark Hoogendoorn
J. Sonke
3DV
27
21
0
25 Jan 2023
On the Expressive Power of Geometric Graph Neural Networks
Chaitanya K. Joshi
Cristian Bodnar
Simon V. Mathis
Taco Cohen
Pietro Liò
50
83
0
23 Jan 2023
SCARP: 3D Shape Completion in ARbitrary Poses for Improved Grasping
Bipasha Sen
Aditya Agarwal
Gaurav Singh
B. Brojeshwar
Srinath Sridhar
Madhava Krishna
3DPC
32
10
0
17 Jan 2023
Equivariant and Steerable Neural Networks: A review with special emphasis on the symmetric group
Patrick Krüger
Hanno Gottschalk
19
1
0
08 Jan 2023
Equivariant Light Field Convolution and Transformer
Yinshuang Xu
Jiahui Lei
Kostas Daniilidis
ViT
19
0
0
30 Dec 2022
Brauer's Group Equivariant Neural Networks
Edward Pearce-Crump
AI4CE
13
15
0
16 Dec 2022
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
29
5
0
12 Dec 2022
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
23
59
0
11 Dec 2022
Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural Fields
Rohith Agaram
Shaurya Dewan
Rahul Sajnani
A. Poulenard
Madhava Krishna
Srinath Sridhar
33
6
0
05 Dec 2022
Score-based denoising for atomic structure identification
Tim Hsu
Babak Sadigh
N. Bertin
Cheol Woo Park
James Chapman
Vasily V. Bulatov
Fei Zhou
DiffM
40
6
0
05 Dec 2022
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution
A. Poulenard
M. Ovsjanikov
Leonidas J. Guibas
3DPC
30
2
0
29 Nov 2022
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis
Pavlo Melnyk
Andreas Robinson
M. Felsberg
Maarten Wadenback
3DPC
18
2
0
26 Nov 2022
Transformation-Equivariant 3D Object Detection for Autonomous Driving
Hai Wu
Chenglu Wen
Wei Li
Xin Li
Ruigang Yang
Cheng-i Wang
3DPC
20
87
0
22 Nov 2022
Homomorphic Self-Supervised Learning
Thomas Anderson Keller
Xavier Suau
Luca Zappella
SSL
19
2
0
15 Nov 2022
SPE-Net: Boosting Point Cloud Analysis via Rotation Robustness Enhancement
Zhaofan Qiu
Yehao Li
Yu Wang
Yingwei Pan
Ting Yao
Tao Mei
3DPC
19
5
0
15 Nov 2022
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
42
23
0
15 Nov 2022
Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations
F. Pezzicoli
Guillaume Charpiat
François P. Landes
21
6
0
06 Nov 2022
Gauge Equivariant Neural Networks for 2+1D U(1) Gauge Theory Simulations in Hamiltonian Formulation
Di Luo
Shunyue Yuan
J. Stokes
B. Clark
21
14
0
06 Nov 2022
Learning the shape of protein micro-environments with a holographic convolutional neural network
Michael N. Pun
Andrew Ivanov
Quinn Bellamy
Zachary Montague
Colin H. LaMont
P. Bradley
J. Otwinowski
Armita Nourmohammad
11
12
0
05 Nov 2022
Breaking the Symmetry: Resolving Symmetry Ambiguities in Equivariant Neural Networks
S. Balachandar
A. Poulenard
Congyue Deng
Leonidas J. Guibas
22
1
0
29 Oct 2022
Transferable E(3) equivariant parameterization for Hamiltonian of molecules and solids
Yang Zhong
Hongyu Yu
Mao Su
X. Gong
H. Xiang
28
36
0
28 Oct 2022
A PAC-Bayesian Generalization Bound for Equivariant Networks
Arash Behboodi
Gabriele Cesa
Taco S. Cohen
48
17
0
24 Oct 2022
Equivariant Networks for Zero-Shot Coordination
Darius Muglich
Christian Schroeder de Witt
Elise van der Pol
Shimon Whiteson
Jakob N. Foerster
47
13
0
21 Oct 2022
Structure-based drug design with geometric deep learning
Clemens Isert
Kenneth Atz
G. Schneider
44
104
0
19 Oct 2022
Learnable Polyphase Sampling for Shift Invariant and Equivariant Convolutional Networks
Renan A. Rojas-Gomez
Teck-Yian Lim
A. Schwing
Minh Do
Raymond A. Yeh
31
9
0
14 Oct 2022
Scale Equivariant U-Net
Mateus Sangalli
S. Blusseau
Santiago Velasco-Forero
Jesús Angulo
SSeg
25
12
0
10 Oct 2022
In What Ways Are Deep Neural Networks Invariant and How Should We Measure This?
Henry Kvinge
Tegan H. Emerson
Grayson Jorgenson
Scott Vasquez
T. Doster
Jesse D. Lew
43
8
0
07 Oct 2022
Holographic-(V)AE: an end-to-end SO(3)-Equivariant (Variational) Autoencoder in Fourier Space
Gian Marco Visani
Michael N. Pun
Arman Angaji
Armita Nourmohammad
BDL
24
3
0
30 Sep 2022
In Search of Projectively Equivariant Networks
Georg Bökman
Axel Flinth
Fredrik Kahl
37
0
0
29 Sep 2022
A Simple Strategy to Provable Invariance via Orbit Mapping
Kanchana Vaishnavi Gandikota
Jonas Geiping
Zorah Lähner
Adam Czapliñski
Michael Moeller
AAML
3DPC
18
3
0
24 Sep 2022
PiFold: Toward effective and efficient protein inverse folding
Zhangyang Gao
Cheng Tan
Pablo Chacón
Stan Z. Li
AI4CE
67
104
0
22 Sep 2022
SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud Representation
Z. Su
Max Welling
M. Pietikäinen
Li Liu
3DPC
32
11
0
13 Sep 2022
SELTO: Sample-Efficient Learned Topology Optimization
Sören Dittmer
David Erzmann
Henrik Harms
Peter Maass
29
2
0
12 Sep 2022
Clifford Neural Layers for PDE Modeling
Johannes Brandstetter
Rianne van den Berg
Max Welling
Jayesh K. Gupta
AI4CE
60
80
0
08 Sep 2022
A Feedforward Unitary Equivariant Neural Network
P. Ma
Terence Chan
23
4
0
25 Aug 2022
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
21
6
0
18 Aug 2022
Previous
1
2
3
4
5
6
7
Next