Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1807.04689
Cited By
Explorations in Homeomorphic Variational Auto-Encoding
12 July 2018
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
BDL
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explorations in Homeomorphic Variational Auto-Encoding"
50 / 86 papers shown
Title
PESTO: Real-Time Pitch Estimation with Self-supervised Transposition-equivariant Objective
Transactions of the International Society for Music Information Retrieval (TISMIR), 2025
Alain Riou
Bernardo Torres
Ben Hayes
Stefan Lattner
Gaëtan Hadjeres
Gaël Richard
Geoffroy Peeters
204
3
0
02 Aug 2025
Riemannian generative decoder
Andreas Bjerregaard
Søren Hauberg
Anders Krogh
DRL
DiffM
231
2
0
23 Jun 2025
Learning symmetries in datasets
Veronica Sanz
DRL
132
0
0
07 Apr 2025
MatrixNet: Learning over symmetry groups using learned group representations
Neural Information Processing Systems (NeurIPS), 2025
Lucas Laird
Circe Hsu
Asilata Bapat
Robin Walters
AI4CE
180
1
0
17 Jan 2025
Approximate Equivariance in Reinforcement Learning
International Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Jung Yeon Park
Sujay Bhatt
Sihan Zeng
Lawson L. S. Wong
Alec Koppel
Sumitra Ganesh
Robin Walters
469
5
0
06 Nov 2024
Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures
Sophia Sanborn
Sophia Sanborn
Johan Mathe
Louisa Cornelis
Abby Bertics
...
Hansen Lillemark
Christian Shewmake
Fatih Dinc
Xavier Pennec
Nina Miolane
300
14
0
12 Jul 2024
Equivariant amortized inference of poses for cryo-EM
Larissa de Ruijter
Gabriele Cesa
149
1
0
01 Jun 2024
Topological Obstructions and How to Avoid Them
Neural Information Processing Systems (NeurIPS), 2023
Babak Esmaeili
Robin Walters
Heiko Zimmermann
Jan-Willem van de Meent
AI4CE
181
3
0
12 Dec 2023
Normed Spaces for Graph Embedding
Diaaeldin Taha
Wei Zhao
J. M. Riestenberg
Michael Strube
200
1
0
03 Dec 2023
GTA: A Geometry-Aware Attention Mechanism for Multi-View Transformers
International Conference on Learning Representations (ICLR), 2023
Takeru Miyato
Bernhard Jaeger
Max Welling
Andreas Geiger
ViT
453
29
0
16 Oct 2023
Latent Space Symmetry Discovery
International Conference on Machine Learning (ICML), 2023
Jianke Yang
Nima Dehmamy
Robin Walters
Rose Yu
275
23
0
29 Sep 2023
Learning to Predict 3D Rotational Dynamics from Images of a Rigid Body with Unknown Mass Distribution
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Leonard
3DH
211
7
0
24 Aug 2023
Equivariant Single View Pose Prediction Via Induced and Restricted Representations
Neural Information Processing Systems (NeurIPS), 2023
Owen Howell
David Klee
Ondrej Biza
Linfeng Zhao
Robin Walters
191
7
0
07 Jul 2023
DUET: 2D Structured and Approximately Equivariant Representations
International Conference on Machine Learning (ICML), 2023
Xavier Suau
Federico Danieli
Thomas Anderson Keller
Arno Blaas
Chen Huang
Jason Ramapuram
Dan Busbridge
Luca Zappella
160
3
0
28 Jun 2023
One-shot Imitation Learning via Interaction Warping
Conference on Robot Learning (CoRL), 2023
Ondrej Biza
Skye Thompson
Kishore Reddy Pagidi
Abhinav Kumar
Elise van der Pol
Robin Walters
Thomas Kipf
Jan-Willem van de Meent
Lawson L. S. Wong
Robert Platt
314
21
0
21 Jun 2023
Vacant Holes for Unsupervised Detection of the Outliers in Compact Latent Representation
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Misha Glazunov
Apostolis Zarras
AAML
DRL
123
2
0
16 Jun 2023
Neural Fourier Transform: A General Approach to Equivariant Representation Learning
International Conference on Learning Representations (ICLR), 2023
Masanori Koyama
Kenji Fukumizu
Kunihiko Miyoshi
Takeru Miyato
254
9
0
29 May 2023
Symmetry and Complexity in Object-Centric Deep Active Inference Models
Interface Focus (IF), 2023
Stefano Ferraro
Toon Van de Maele
Tim Verbelen
Bart Dhoedt
139
7
0
14 Apr 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
171
1
0
24 Mar 2023
Modeling Barrett's Esophagus Progression using Geometric Variational Autoencoders
Vivien van Veldhuizen
Sharvaree P. Vadgama
Onno J. de Boer
Sybren Meijer
Erik Bekkers
DRL
252
0
0
17 Mar 2023
MELON: NeRF with Unposed Images in SO(3)
International Conference on 3D Vision (3DV), 2023
Axel Levy
Mark J. Matthews
Matan Sela
Gordon Wetzstein
Dmitry Lagun
139
3
0
14 Mar 2023
Image to Sphere: Learning Equivariant Features for Efficient Pose Prediction
International Conference on Learning Representations (ICLR), 2023
David Klee
Ondrej Biza
Robert Platt
Robin Walters
182
23
0
27 Feb 2023
Self-supervised learning of Split Invariant Equivariant representations
International Conference on Machine Learning (ICML), 2023
Q. Garrido
Laurent Najman
Yann LeCun
SSL
258
40
0
14 Feb 2023
Equivariant Representation Learning in the Presence of Stabilizers
Luis Armando
∗. GiovanniLucaMarchetti
Danica Kragic
D. Jarnikov
Mike Holenderski
167
0
0
12 Jan 2023
ViewNet: Unsupervised Viewpoint Estimation from Conditional Generation
IEEE International Conference on Computer Vision (ICCV), 2021
Octave Mariotti
Oisin Mac Aodha
Hakan Bilen
172
8
0
01 Dec 2022
The Surprising Effectiveness of Equivariant Models in Domains with Latent Symmetry
International Conference on Learning Representations (ICLR), 2022
Dian Wang
Jung Yeon Park
Neel Sortur
Lawson L. S. Wong
Robin Walters
Robert Platt
AAML
240
39
0
16 Nov 2022
Synthetic Data Supervised Salient Object Detection
ACM Multimedia (ACM MM), 2022
Zhenyu Wu
Lin Wang
Wei Wang
Tengfei Shi
Chenglizhao Chen
Aimin Hao
Shuo Li
160
30
0
25 Oct 2022
Unsupervised Learning of Equivariant Structure from Sequences
Neural Information Processing Systems (NeurIPS), 2022
Takeru Miyato
Masanori Koyama
Kenji Fukumizu
168
14
0
12 Oct 2022
FONDUE: an algorithm to find the optimal dimensionality of the latent representations of variational autoencoders
Lisa Bonheme
M. Grzes
DRL
198
8
0
26 Sep 2022
Learning Interpretable Dynamics from Images of a Freely Rotating 3D Rigid Body
J. Mason
Christine Allen-Blanchette
Nicholas Zolman
Elizabeth Davison
Naomi Ehrich Leonard
3DH
AI4CE
293
9
0
23 Sep 2022
A Geometric Perspective on Variational Autoencoders
Neural Information Processing Systems (NeurIPS), 2022
Clément Chadebec
S. Allassonnière
DRL
193
29
0
15 Sep 2022
Semi-Supervised Manifold Learning with Complexity Decoupled Chart Autoencoders
Stefan C. Schonsheck
Scott Mahan
T. Klock
A. Cloninger
Rongjie Lai
DRL
153
7
0
22 Aug 2022
Defining an action of SO(d)-rotations on images generated by projections of d-dimensional objects: Applications to pose inference with Geometric VAEs
Nicolas Legendre
K. D. Duc
Nina Miolane
107
0
0
23 Jul 2022
Image to Icosahedral Projection for
S
O
(
3
)
\mathrm{SO}(3)
SO
(
3
)
Object Reasoning from Single-View Images
David Klee
Ondrej Biza
Robert Platt
Robin Walters
223
4
0
18 Jul 2022
Equivariant Representation Learning via Class-Pose Decomposition
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Giovanni Luca Marchetti
Gustaf Tegnér
Anastasiia Varava
Danica Kragic
DRL
259
16
0
07 Jul 2022
Equivariant Priors for Compressed Sensing with Unknown Orientation
International Conference on Machine Learning (ICML), 2022
Anna Kuzina
Kumar Pratik
F. V. Massoli
Arash Behboodi
212
3
0
28 Jun 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Neural Information Processing Systems (NeurIPS), 2022
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
182
37
0
16 Jun 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Journal of Computational Physics (JCP), 2022
Ryan Lopez
P. Atzberger
AI4CE
319
9
0
10 Jun 2022
Learning Symmetric Embeddings for Equivariant World Models
International Conference on Machine Learning (ICML), 2022
Jung Yeon Park
Ondrej Biza
Linfeng Zhao
Jan-Willem van de Meent
Robin Walters
268
48
0
24 Apr 2022
Transformation Coding: Simple Objectives for Equivariant Representations
Mehran Shakerinava
A. Mondal
Siamak Ravanbakhsh
OffRL
132
0
0
19 Feb 2022
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
380
27
0
24 Nov 2021
On the Latent Holes of VAEs for Text Generation
Ruizhe Li
Xutan Peng
Chenghua Lin
187
5
0
07 Oct 2021
Stochastic Normalizing Flows for Inverse Problems: a Markov Chains Viewpoint
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
435
44
0
23 Sep 2021
End-to-End Simultaneous Learning of Single-particle Orientation and 3D Map Reconstruction from Cryo-electron Microscopy Data
Y. Nashed
Frédéric Poitevin
Harshit Gupta
G. Woollard
Michael Kagan
Chuck Yoon
Daniel Ratner
3DV
115
7
0
07 Jul 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Neural Information Processing Systems (NeurIPS), 2021
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
269
22
0
30 Jun 2021
On the Generative Utility of Cyclic Conditionals
Neural Information Processing Systems (NeurIPS), 2021
Yu Xie
Haoyue Tang
Tao Qin
Jintao Wang
Tie-Yan Liu
185
3
0
30 Jun 2021
On Incorporating Inductive Biases into VAEs
International Conference on Learning Representations (ICLR), 2021
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
233
11
0
25 Jun 2021
Symmetry-via-Duality: Invariant Neural Network Densities from Parameter-Space Correlators
Anindita Maiti
Keegan Stoner
James Halverson
138
26
0
01 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
317
82
0
30 Apr 2021
Autoequivariant Network Search via Group Decomposition
Sourya Basu
A. Magesh
Harshit Yadav
Lav Varshney
181
6
0
10 Apr 2021
1
2
Next