ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.04689
  4. Cited By
Explorations in Homeomorphic Variational Auto-Encoding

Explorations in Homeomorphic Variational Auto-Encoding

12 July 2018
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
    BDLDRL
ArXiv (abs)PDFHTML

Papers citing "Explorations in Homeomorphic Variational Auto-Encoding"

36 / 86 papers shown
Title
Continuous normalizing flows on manifolds
Continuous normalizing flows on manifolds
Luca Falorsi
BDLAI4CE
120
12
0
14 Mar 2021
Addressing the Topological Defects of Disentanglement via Distributed
  Operators
Addressing the Topological Defects of Disentanglement via Distributed Operators
Diane Bouchacourt
Mark Ibrahim
Stéphane Deny
128
22
0
10 Feb 2021
Learning Rotation Invariant Features for Cryogenic Electron Microscopy
  Image Reconstruction
Learning Rotation Invariant Features for Cryogenic Electron Microscopy Image ReconstructionIEEE International Symposium on Biomedical Imaging (ISBI), 2021
Koby Bibas
Gili Weiss-Dicker
Dana Cohen
Noa Cahan
H. Greenspan
142
8
0
10 Jan 2021
Variational Autoencoders for Learning Nonlinear Dynamics of Physical
  Systems
Variational Autoencoders for Learning Nonlinear Dynamics of Physical Systems
Ryan Lopez
P. Atzberger
DRLAI4CE
213
12
0
07 Dec 2020
Joint Estimation of Image Representations and their Lie Invariants
Joint Estimation of Image Representations and their Lie Invariants
Christine Allen-Blanchette
Kostas Daniilidis
155
0
0
05 Dec 2020
Learning Equivariant Representations
Learning Equivariant Representations
Carlos Esteves
BDL
154
0
0
04 Dec 2020
Generative Capacity of Probabilistic Protein Sequence Models
Generative Capacity of Probabilistic Protein Sequence ModelsNature Communications (Nat Commun), 2020
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
273
38
0
03 Dec 2020
What is a meaningful representation of protein sequences?
What is a meaningful representation of protein sequences?Nature Communications (Nat Commun), 2020
N. Detlefsen
Søren Hauberg
Wouter Boomsma
451
136
0
28 Nov 2020
Deep Autoencoders: From Understanding to Generalization Guarantees
Deep Autoencoders: From Understanding to Generalization GuaranteesMathematical and Scientific Machine Learning (MSML), 2020
Romain Cosentino
Randall Balestriero
Richard Baraniuk
B. Aazhang
179
6
0
20 Sep 2020
Manifolds for Unsupervised Visual Anomaly Detection
Manifolds for Unsupervised Visual Anomaly Detection
Louise Naud
Alexander Lavin
DRL
171
7
0
19 Jun 2020
Neural Ordinary Differential Equations on Manifolds
Neural Ordinary Differential Equations on Manifolds
Luca Falorsi
Patrick Forré
BDLAI4CE
137
36
0
11 Jun 2020
The Power Spherical distribution
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
165
35
0
08 Jun 2020
Hyperbolic Manifold Regression
Hyperbolic Manifold RegressionInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Gian Maria Marconi
Lorenzo Rosasco
C. Ciliberto
171
7
0
28 May 2020
Disentanglement with Hyperspherical Latent Spaces using Diffusion
  Variational Autoencoders
Disentanglement with Hyperspherical Latent Spaces using Diffusion Variational Autoencoders
L. A. P. Rey
DRLCoGe
62
5
0
19 Mar 2020
Stochastic Normalizing Flows
Stochastic Normalizing FlowsNeural Information Processing Systems (NeurIPS), 2020
Hao Wu
Jonas Köhler
Frank Noé
429
203
0
16 Feb 2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based
  Models without Sampling
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without SamplingInternational Conference on Machine Learning (ICML), 2020
Will Grathwohl
Kuan-Chieh Wang
J. Jacobsen
David Duvenaud
R. Zemel
217
14
0
13 Feb 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion PriorsInternational Conference on Machine Learning (ICML), 2020
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDLDRL
292
54
0
12 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and SpheresInternational Conference on Machine Learning (ICML), 2020
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
258
171
0
06 Feb 2020
Chart Auto-Encoders for Manifold Structured Data
Chart Auto-Encoders for Manifold Structured Data
Stefan C. Schonsheck
Jie Chen
Rongjie Lai
DRLGNN
193
32
0
20 Dec 2019
No Representation without Transformation
No Representation without Transformation
Giorgio Giannone
Saeed Saremi
Jonathan Masci
Christian Osendorfer
BDLDRL
136
2
0
09 Dec 2019
Representing Closed Transformation Paths in Encoded Network Latent Space
Representing Closed Transformation Paths in Encoded Network Latent SpaceAAAI Conference on Artificial Intelligence (AAAI), 2019
Marissa Connor
Christopher Rozell
3DPCDRL
142
29
0
05 Dec 2019
A Neural Rendering Framework for Free-Viewpoint Relighting
A Neural Rendering Framework for Free-Viewpoint RelightingComputer Vision and Pattern Recognition (CVPR), 2019
Zhaoyu Chen
Anpei Chen
Guli Zhang
Chengyuan Wang
Yu Ji
Kiriakos N. Kutulakos
Jingyi Yu
279
50
0
26 Nov 2019
Variational Integrator Networks for Physically Structured Embeddings
Variational Integrator Networks for Physically Structured EmbeddingsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Steindór Sæmundsson
Alexander Terenin
Katja Hofmann
M. Deisenroth
GNNAI4CE
240
54
0
21 Oct 2019
Increasing Expressivity of a Hyperspherical VAE
Increasing Expressivity of a Hyperspherical VAE
Tim R. Davidson
Jakub M. Tomczak
E. Gavves
129
6
0
07 Oct 2019
Explicitly disentangling image content from translation and rotation
  with spatial-VAE
Explicitly disentangling image content from translation and rotation with spatial-VAENeural Information Processing Systems (NeurIPS), 2019
Tristan Bepler
Ellen D. Zhong
Kotaro Kelley
E. Brignole
Bonnie Berger
CoGeDRL
122
81
0
25 Sep 2019
Deferred Neural Rendering: Image Synthesis using Neural Textures
Deferred Neural Rendering: Image Synthesis using Neural TexturesACM Transactions on Graphics (TOG), 2019
Justus Thies
Michael Zollhöfer
Matthias Nießner
3DH
201
748
0
28 Apr 2019
Spherical Regression: Learning Viewpoints, Surface Normals and 3D
  Rotations on n-Spheres
Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres
Shuai Liao
E. Gavves
Cees G. M. Snoek
178
71
0
10 Apr 2019
Semantics Preserving Adversarial Learning
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAMLGAN
386
2
0
10 Mar 2019
Reparameterizing Distributions on Lie Groups
Reparameterizing Distributions on Lie Groups
Luca Falorsi
P. D. Haan
Tim R. Davidson
Patrick Forré
BDLDRL
155
89
0
07 Mar 2019
Invariant-equivariant representation learning for multi-class data
Invariant-equivariant representation learning for multi-class dataInternational Conference on Machine Learning (ICML), 2019
Ilya Feige
134
10
0
08 Feb 2019
Continuous Hierarchical Representations with Poincaré Variational
  Auto-Encoders
Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders
Emile Mathieu
Charline Le Lan
Chris J. Maddison
Ryota Tomioka
Yee Whye Teh
BDLDRL
296
196
0
17 Jan 2019
Topological Constraints on Homeomorphic Auto-Encoding
Topological Constraints on Homeomorphic Auto-Encoding
P. D. Haan
Luca Falorsi
63
7
0
27 Dec 2018
On the Continuity of Rotation Representations in Neural Networks
On the Continuity of Rotation Representations in Neural Networks
Yi Zhou
Connelly Barnes
Jingwan Lu
Jimei Yang
Hao Li
3DH
507
1,532
0
17 Dec 2018
Embedding-reparameterization procedure for manifold-valued latent
  variables in generative models
Embedding-reparameterization procedure for manifold-valued latent variables in generative models
Eugene Golikov
M. Kretov
DRL
101
0
0
06 Dec 2018
Cross-Domain 3D Equivariant Image Embeddings
Cross-Domain 3D Equivariant Image Embeddings
Carlos Esteves
Avneesh Sud
Zhengyi Luo
Kostas Daniilidis
A. Makadia
3DPC
177
23
0
06 Dec 2018
DeepVoxels: Learning Persistent 3D Feature Embeddings
DeepVoxels: Learning Persistent 3D Feature Embeddings
Vincent Sitzmann
Justus Thies
Felix Heide
Matthias Nießner
Gordon Wetzstein
Michael Zollhöfer
SSL3DPCMDE
461
710
0
03 Dec 2018
Previous
12