Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.01861
Cited By
Inhibited Softmax for Uncertainty Estimation in Neural Networks
3 October 2018
Marcin Mo.zejko
Mateusz Susik
Rafal Karczewski
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inhibited Softmax for Uncertainty Estimation in Neural Networks"
14 / 14 papers shown
Title
AI Security for Geoscience and Remote Sensing: Challenges and Future Trends
Yonghao Xu
Tao Bai
Weikang Yu
Shizhen Chang
P. M. Atkinson
Pedram Ghamisi
AAML
38
47
0
19 Dec 2022
Revisiting Softmax for Uncertainty Approximation in Text Classification
Andreas Nugaard Holm
Dustin Wright
Isabelle Augenstein
BDL
UQCV
18
8
0
25 Oct 2022
To Softmax, or not to Softmax: that is the question when applying Active Learning for Transformer Models
Julius Gonsior
C. Falkenberg
Silvio Magino
Anja Reusch
Maik Thiele
Wolfgang Lehner
UQCV
36
7
0
06 Oct 2022
TEDL: A Two-stage Evidential Deep Learning Method for Classification Uncertainty Quantification
Xue Li
Wei Shen
Denis Xavier Charles
UQCV
EDL
40
3
0
12 Sep 2022
Dealing with Distribution Mismatch in Semi-supervised Deep Learning for Covid-19 Detection Using Chest X-ray Images: A Novel Approach Using Feature Densities
Saul Calderon-Ramirez
Shengxiang-Yang
David Elizondo
Armaghan Moemeni
OOD
28
24
0
17 Aug 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
59
1,111
0
07 Jul 2021
Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many Localisations
Andreas Panteli
Jonas Teuwen
H. Horlings
E. Gavves
26
3
0
21 Apr 2021
MixMOOD: A systematic approach to class distribution mismatch in semi-supervised learning using deep dataset dissimilarity measures
Saul Calderon-Ramirez
Luis Oala
J. Torrents-Barrena
Shengxiang-Yang
Armaghan Moemeni
Wojciech Samek
Miguel A. Molina-Cabello
22
10
0
14 Jun 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
33
314
0
15 Feb 2020
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
27
139
0
01 Aug 2019
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1