ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09538
  4. Cited By
Pyro: Deep Universal Probabilistic Programming

Pyro: Deep Universal Probabilistic Programming

18 October 2018
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
    BDL
    GP
ArXivPDFHTML

Papers citing "Pyro: Deep Universal Probabilistic Programming"

50 / 436 papers shown
Title
Scalable Bayesian Learning with posteriors
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
Understanding and mitigating difficulties in posterior predictive
  evaluation
Understanding and mitigating difficulties in posterior predictive evaluation
Abhinav Agrawal
Justin Domke
UQCV
45
0
0
30 May 2024
Gaussian Embedding of Temporal Networks
Gaussian Embedding of Temporal Networks
Raphaël Romero
Jefrey Lijffijt
Riccardo Rastelli
Marco Corneli
Tijl De Bie
39
1
0
27 May 2024
Federated Learning for Non-factorizable Models using Deep Generative
  Prior Approximations
Federated Learning for Non-factorizable Models using Deep Generative Prior Approximations
Conor Hassan
Joshua J Bon
Elizaveta Semenova
Antonietta Mira
Kerrie Mengersen
26
0
0
25 May 2024
Dissecting the Interplay of Attention Paths in a Statistical Mechanics
  Theory of Transformers
Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers
Lorenzo Tiberi
Francesca Mignacco
Kazuki Irie
H. Sompolinsky
44
6
0
24 May 2024
Probabilistic transfer learning methodology to expedite high fidelity
  simulation of reactive flows
Probabilistic transfer learning methodology to expedite high fidelity simulation of reactive flows
Bruno S. Soriano
Kisung Jung
T. Echekki
Jacqueline H. Chen
Mohammad Khalil
AI4CE
24
1
0
17 May 2024
Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable
  AI Systems
Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems
David Dalrymple
Joar Skalse
Yoshua Bengio
Stuart J. Russell
Max Tegmark
...
Clark Barrett
Ding Zhao
Zhi-Xuan Tan
Jeannette Wing
Joshua Tenenbaum
52
52
0
10 May 2024
In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies
In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies
Yunbum Kook
Santosh Vempala
Matthew Shunshi Zhang
27
7
0
02 May 2024
ULLER: A Unified Language for Learning and Reasoning
ULLER: A Unified Language for Learning and Reasoning
Emile van Krieken
Samy Badreddine
Robin Manhaeve
Eleonora Giunchiglia
NAI
32
3
0
01 May 2024
BayesBlend: Easy Model Blending using Pseudo-Bayesian Model Averaging,
  Stacking and Hierarchical Stacking in Python
BayesBlend: Easy Model Blending using Pseudo-Bayesian Model Averaging, Stacking and Hierarchical Stacking in Python
Nathaniel Haines
Conor Goold
MoMe
15
1
0
30 Apr 2024
Learning Car-Following Behaviors Using Bayesian Matrix Normal Mixture
  Regression
Learning Car-Following Behaviors Using Bayesian Matrix Normal Mixture Regression
Chengyuan Zhang
Kehua Chen
Meixin Zhu
Hai Yang
Lijun Sun
33
1
0
24 Apr 2024
Preconditioned Neural Posterior Estimation for Likelihood-free Inference
Preconditioned Neural Posterior Estimation for Likelihood-free Inference
Xiaoyu Wang
Ryan P. Kelly
D. Warne
Christopher C. Drovandi
37
4
0
21 Apr 2024
Diffusion posterior sampling for simulation-based inference in tall data
  settings
Diffusion posterior sampling for simulation-based inference in tall data settings
J. Linhart
Gabriel Victorino Cardoso
Alexandre Gramfort
Sylvain Le Corff
Pedro L. C. Rodrigues
DiffM
53
3
0
11 Apr 2024
Efficient Sound Field Reconstruction with Conditional Invertible Neural
  Networks
Efficient Sound Field Reconstruction with Conditional Invertible Neural Networks
X. Karakonstantis
Efren Fernandez-Grande
Peter Gerstoft
24
0
0
10 Apr 2024
Bayesian Inference for Consistent Predictions in Overparameterized
  Nonlinear Regression
Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression
Tomoya Wakayama
BDL
57
0
0
06 Apr 2024
Adaptive Splitting of Reusable Temporal Monitors for Rare Traffic
  Violations
Adaptive Splitting of Reusable Temporal Monitors for Rare Traffic Violations
Craig Innes
S. Ramamoorthy
35
0
0
13 Mar 2024
Automated Efficient Estimation using Monte Carlo Efficient Influence
  Functions
Automated Efficient Estimation using Monte Carlo Efficient Influence Functions
Raj Agrawal
Sam Witty
Andy Zane
Eli Bingham
32
2
0
29 Feb 2024
Real-Time Adaptive Safety-Critical Control with Gaussian Processes in
  High-Order Uncertain Models
Real-Time Adaptive Safety-Critical Control with Gaussian Processes in High-Order Uncertain Models
Yu Zhang
Long Wen
Xiangtong Yao
Zhenshan Bing
Linghuan Kong
Wei He
Alois Knoll
45
1
0
29 Feb 2024
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library
  for Gaussian Processes and Variational Inference
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference
G. Edenhofer
Philipp Frank
Jakob Roth
R. Leike
Massin Guerdi
L. Scheel-Platz
M. Guardiani
Vincent Eberle
M. Westerkamp
T. Ensslin
30
9
0
26 Feb 2024
Batch and match: black-box variational inference with a score-based
  divergence
Batch and match: black-box variational inference with a score-based divergence
Diana Cai
Chirag Modi
Loucas Pillaud-Vivien
C. Margossian
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
38
9
0
22 Feb 2024
Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
  via Reparameterisation and Smoothing
Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models via Reparameterisation and Smoothing
Dominik Wagner
Basim Khajwal
C.-H. Luke Ong
21
0
0
19 Feb 2024
BlackJAX: Composable Bayesian inference in JAX
BlackJAX: Composable Bayesian inference in JAX
Alberto Cabezas
Adrien Corenflos
Junpeng Lao
Rémi Louf
Antoine Carnec
...
Kevin P. Murphy
Juan Camilo Orduz
Karm Patel
Xi Wang
Robert Zinkov
DRL
MLAU
41
18
0
16 Feb 2024
Improvement and generalization of ABCD method with Bayesian inference
Improvement and generalization of ABCD method with Bayesian inference
Ezequiel Alvarez
L. Rold
Manuel Szewc
A. Szynkman
Santiago A. Tanco
Tatiana Tarutina
14
3
0
12 Feb 2024
YAMLE: Yet Another Machine Learning Environment
YAMLE: Yet Another Machine Learning Environment
Martin Ferianc
Miguel R. D. Rodrigues
VLM
13
3
0
09 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
32
17
0
03 Feb 2024
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
...
David Rügamer
Yee Whye Teh
Max Welling
Andrew Gordon Wilson
Ruqi Zhang
UQCV
BDL
40
27
0
01 Feb 2024
Do Bayesian Neural Networks Improve Weapon System Predictive
  Maintenance?
Do Bayesian Neural Networks Improve Weapon System Predictive Maintenance?
Michael L. Potter
Miru D. Jun
17
0
0
16 Dec 2023
Automatic Rao-Blackwellization for Sequential Monte Carlo with Belief
  Propagation
Automatic Rao-Blackwellization for Sequential Monte Carlo with Belief Propagation
Waïss Azizian
Guillaume Baudart
Marc Lelarge
14
3
0
15 Dec 2023
Estimation of Concept Explanations Should be Uncertainty Aware
Estimation of Concept Explanations Should be Uncertainty Aware
Vihari Piratla
Juyeon Heo
Katherine M. Collins
Sukriti Singh
Adrian Weller
26
1
0
13 Dec 2023
VAE-IF: Deep feature extraction with averaging for unsupervised artifact
  detection in routine acquired ICU time-series
VAE-IF: Deep feature extraction with averaging for unsupervised artifact detection in routine acquired ICU time-series
Hollan Haule
Ian Piper
Patricia Jones
Chen Qin
T. M. Lo
Javier Escudero
13
0
0
10 Dec 2023
Disentangled Latent Representation Learning for Tackling the Confounding
  M-Bias Problem in Causal Inference
Disentangled Latent Representation Learning for Tackling the Confounding M-Bias Problem in Causal Inference
Debo Cheng
Yang Xie
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Yinghao Zhang
Zaiwen Feng
CML
BDL
20
1
0
08 Dec 2023
A Bayesian neural network approach to Multi-fidelity surrogate modelling
A Bayesian neural network approach to Multi-fidelity surrogate modelling
Baptiste Kerleguer
C. Cannamela
Josselin Garnier
UQCV
6
5
0
05 Dec 2023
Attacking Motion Planners Using Adversarial Perception Errors
Attacking Motion Planners Using Adversarial Perception Errors
Jonathan Sadeghi
Nicholas A. Lord
John Redford
Romain Mueller
AAML
34
2
0
21 Nov 2023
Variational Elliptical Processes
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
20
2
0
21 Nov 2023
SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet
  Variational Autoencoder for Hyperspectral Pixel Unmixing
SpACNN-LDVAE: Spatial Attention Convolutional Latent Dirichlet Variational Autoencoder for Hyperspectral Pixel Unmixing
S. Chitnis
Kiran Mantripragada
Faisal Z. Qureshi
19
0
0
17 Nov 2023
Zenkai -- Framework For Exploring Beyond Backpropagation
Zenkai -- Framework For Exploring Beyond Backpropagation
Greg Short
18
0
0
16 Nov 2023
Variational Temporal IRT: Fast, Accurate, and Explainable Inference of
  Dynamic Learner Proficiency
Variational Temporal IRT: Fast, Accurate, and Explainable Inference of Dynamic Learner Proficiency
Yunsung Kim
Sreechan Sankaranarayanan
Chris Piech
Candace Thille
VLM
47
2
0
14 Nov 2023
BClean: A Bayesian Data Cleaning System
BClean: A Bayesian Data Cleaning System
Jianbin Qin
Sifan Huang
Yaoshu Wang
Jing Zhu
Yifan Zhang
Yukai Miao
Rui Mao
Makoto Onizuka
Chuan Xiao
13
4
0
11 Nov 2023
Learning material synthesis-process-structure-property relationship by
  data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function
  Learning
Learning material synthesis-process-structure-property relationship by data fusion: Bayesian Coregionalization N-Dimensional Piecewise Function Learning
A. Kusne
A. McDannald
Brian L. DeCost
13
2
0
10 Nov 2023
Uncertainty Quantification in Multivariable Regression for Material
  Property Prediction with Bayesian Neural Networks
Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks
Longze Li
Jiang Chang
Aleksandar Vakanski
Yachun Wang
Tiankai Yao
Min Xian
AI4CE
11
17
0
04 Nov 2023
Rethinking Variational Inference for Probabilistic Programs with
  Stochastic Support
Rethinking Variational Inference for Probabilistic Programs with Stochastic Support
Tim Reichelt
C. Ong
Tom Rainforth
22
2
0
01 Nov 2023
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs
  with Stochastic Support
Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support
Tim Reichelt
C.-H. Luke Ong
Tom Rainforth
30
0
0
23 Oct 2023
Posterior Sampling-based Online Learning for Episodic POMDPs
Posterior Sampling-based Online Learning for Episodic POMDPs
Dengwang Tang
Dongze Ye
Rahul Jain
A. Nayyar
Pierluigi Nuzzo
OffRL
51
0
0
16 Oct 2023
Worst-Case Analysis is Maximum-A-Posteriori Estimation
Worst-Case Analysis is Maximum-A-Posteriori Estimation
Hongjun Wu
Di Wang
27
0
0
15 Oct 2023
Surrogate modeling for stochastic crack growth processes in structural
  health monitoring applications
Surrogate modeling for stochastic crack growth processes in structural health monitoring applications
Nicholas E. Silionis
K. Anyfantis
AI4CE
21
0
0
11 Oct 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
26
1
0
10 Oct 2023
Causal Inference with Conditional Front-Door Adjustment and Identifiable
  Variational Autoencoder
Causal Inference with Conditional Front-Door Adjustment and Identifiable Variational Autoencoder
Ziqi Xu
Debo Cheng
Jiuyong Li
Jixue Liu
Lin Liu
Kui Yu
CML
39
9
0
03 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Bayesian sparsification for deep neural networks with Bayesian model
  reduction
Bayesian sparsification for deep neural networks with Bayesian model reduction
Dimitrije Marković
K. Friston
S. Kiebel
BDL
UQCV
38
1
0
21 Sep 2023
Previous
123456789
Next