ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09538
  4. Cited By
Pyro: Deep Universal Probabilistic Programming

Pyro: Deep Universal Probabilistic Programming

18 October 2018
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
    BDL
    GP
ArXivPDFHTML

Papers citing "Pyro: Deep Universal Probabilistic Programming"

50 / 436 papers shown
Title
Estimation of Counterfactual Interventions under Uncertainties
Estimation of Counterfactual Interventions under Uncertainties
Juliane Weilbach
S. Gerwinn
M. Kandemir
Martin Fraenzle
37
0
0
15 Sep 2023
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular
  Calorimeter Simulation
CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation
E. Buhmann
F. Gaede
Gregor Kasieczka
A. Korol
W. Korcari
K. Krüger
Peter McKeown
DiffM
32
24
0
11 Sep 2023
Generalized Variable Selection Algorithms for Gaussian Process Models by
  LASSO-like Penalty
Generalized Variable Selection Algorithms for Gaussian Process Models by LASSO-like Penalty
Zhiyong Hu
D. Dey
23
3
0
08 Sep 2023
Probabilistic load forecasting with Reservoir Computing
Probabilistic load forecasting with Reservoir Computing
Michele Guerra
Simone Scardapane
F. Bianchi
BDL
21
3
0
24 Aug 2023
Robust Bayesian Tensor Factorization with Zero-Inflated Poisson Model
  and Consensus Aggregation
Robust Bayesian Tensor Factorization with Zero-Inflated Poisson Model and Consensus Aggregation
Daniel Chafamo
Vignesh Shanmugam
Neriman Tokcan
14
1
0
15 Aug 2023
Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks
Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks
Sadhana Lolla
I. Elistratov
Alejandro Perez
Elaheh Ahmadi
Daniela Rus
Alexander Amini
UQCV
22
0
0
01 Aug 2023
Rapid and Scalable Bayesian AB Testing
Rapid and Scalable Bayesian AB Testing
S. Chennu
Andrew Maher
C. Pangerl
Subash Prabanantham
Jae Hyeon Bae
Jamie Martin
Bud Goswami
35
0
0
27 Jul 2023
Scaling Integer Arithmetic in Probabilistic Programs
Scaling Integer Arithmetic in Probabilistic Programs
William X. Cao
Poorva Garg
Ryan Tjoa
Steven Holtzen
T. Millstein
Mathias Niepert
TPM
19
6
0
25 Jul 2023
A Novel Application of Conditional Normalizing Flows: Stellar Age
  Inference with Gyrochronology
A Novel Application of Conditional Normalizing Flows: Stellar Age Inference with Gyrochronology
P. Van-Lane
J. Speagle
S. Douglas
21
1
0
17 Jul 2023
Learning for Counterfactual Fairness from Observational Data
Learning for Counterfactual Fairness from Observational Data
Jing Ma
Ruocheng Guo
Aidong Zhang
Jundong Li
FaML
16
11
0
17 Jul 2023
Variational Inference with Gaussian Score Matching
Variational Inference with Gaussian Score Matching
Chirag Modi
C. Margossian
Yuling Yao
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
16
12
0
15 Jul 2023
LINFA: a Python library for variational inference with normalizing flow
  and annealing
LINFA: a Python library for variational inference with normalizing flow and annealing
Yu Wang
Emma R. Cobian
Jubilee Lee
Fang Liu
J. Hauenstein
Daniele E. Schiavazzi
BDL
AI4CE
26
0
0
10 Jul 2023
A probabilistic, data-driven closure model for RANS simulations with
  aleatoric, model uncertainty
A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty
A. Agrawal
P. Koutsourelakis
AI4CE
24
15
0
05 Jul 2023
High Fidelity Image Counterfactuals with Probabilistic Causal Models
High Fidelity Image Counterfactuals with Probabilistic Causal Models
Fabio De Sousa Ribeiro
Tian Xia
M. Monteiro
Nick Pawlowski
Ben Glocker
DiffM
35
36
0
27 Jun 2023
A Heavy-Tailed Algebra for Probabilistic Programming
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
20
3
0
15 Jun 2023
Scalable Neural-Probabilistic Answer Set Programming
Scalable Neural-Probabilistic Answer Set Programming
Arseny Skryagin
Daniel Ochs
Devendra Singh Dhami
Kristian Kersting
35
5
0
14 Jun 2023
Finite Gaussian Neurons: Defending against adversarial attacks by making
  neural networks say "I don't know"
Finite Gaussian Neurons: Defending against adversarial attacks by making neural networks say "I don't know"
Félix Grèzes
AAML
14
0
0
13 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
35
0
0
10 Jun 2023
Automating Model Comparison in Factor Graphs
Automating Model Comparison in Factor Graphs
Bart Van Erp
Wouter W. L. Nuijten
T. V. D. Laar
Bert De Vries
16
1
0
09 Jun 2023
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics
  Approach
Adaptive Batch Sizes for Active Learning A Probabilistic Numerics Approach
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Xingchen Wan
Vu Nguyen
Harald Oberhauser
Michael A. Osborne
28
5
0
09 Jun 2023
Bayesian Calibration of MEMS Accelerometers
Bayesian Calibration of MEMS Accelerometers
Oliver Durr
Po-Yu Fan
Zong-Xian Yin
19
11
0
09 Jun 2023
Correction of Errors in Preference Ratings from Automated Metrics for
  Text Generation
Correction of Errors in Preference Ratings from Automated Metrics for Text Generation
Jan Deriu
Pius von Daniken
Don Tuggener
Mark Cieliebak
29
2
0
06 Jun 2023
Structured Voronoi Sampling
Structured Voronoi Sampling
Afra Amini
Li Du
Ryan Cotterell
DiffM
27
1
0
05 Jun 2023
An information field theory approach to Bayesian state and parameter
  estimation in dynamical systems
An information field theory approach to Bayesian state and parameter estimation in dynamical systems
Kairui Hao
Ilias Bilionis
14
4
0
03 Jun 2023
Learning to solve Bayesian inverse problems: An amortized variational
  inference approach using Gaussian and Flow guides
Learning to solve Bayesian inverse problems: An amortized variational inference approach using Gaussian and Flow guides
Sharmila Karumuri
Ilias Bilionis
33
2
0
31 May 2023
Deep learning and MCMC with aggVAE for shifting administrative
  boundaries: mapping malaria prevalence in Kenya
Deep learning and MCMC with aggVAE for shifting administrative boundaries: mapping malaria prevalence in Kenya
Elizaveta Semenova
Swapnil Mishra
Samir Bhatt
Seth Flaxman
H Juliette T Unwin
20
1
0
31 May 2023
Empirical Sufficiency Lower Bounds for Language Modeling with
  Locally-Bootstrapped Semantic Structures
Empirical Sufficiency Lower Bounds for Language Modeling with Locally-Bootstrapped Semantic Structures
Jakob Prange
Emmanuele Chersoni
32
0
0
30 May 2023
Statistically Efficient Bayesian Sequential Experiment Design via
  Reinforcement Learning with Cross-Entropy Estimators
Statistically Efficient Bayesian Sequential Experiment Design via Reinforcement Learning with Cross-Entropy Estimators
Tom Blau
Iadine Chadès
Amir Dezfouli
Daniel M. Steinberg
Edwin V. Bonilla
18
1
0
29 May 2023
Exact Bayesian Inference on Discrete Models via Probability Generating
  Functions: A Probabilistic Programming Approach
Exact Bayesian Inference on Discrete Models via Probability Generating Functions: A Probabilistic Programming Approach
Fabian Zaiser
A. Murawski
Luke Ong
TPM
15
6
0
26 May 2023
On the Convergence of Black-Box Variational Inference
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi Ma
Jacob R. Gardner
BDL
42
15
0
24 May 2023
Adversarial robustness of amortized Bayesian inference
Adversarial robustness of amortized Bayesian inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
AAML
27
13
0
24 May 2023
A Rational Model of Dimension-reduced Human Categorization
A Rational Model of Dimension-reduced Human Categorization
Yifan Hong
Chen Wang
6
0
0
22 May 2023
CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter
  Simulation
CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation
E. Buhmann
S. Diefenbacher
E. Eren
F. Gaede
Gregor Kasieczka
A. Korol
W. Korcari
K. Krüger
Peter McKeown
DiffM
23
45
0
08 May 2023
Ensuring Reliable Robot Task Performance through Probabilistic
  Rare-Event Verification and Synthesis
Ensuring Reliable Robot Task Performance through Probabilistic Rare-Event Verification and Synthesis
Guy Scher
Sadra Sadraddini
Ariel Yadin
H. Kress-Gazit
27
1
0
28 Apr 2023
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Carl Hvarfner
E. Hellsten
Frank Hutter
Luigi Nardi
GP
43
15
0
21 Apr 2023
A tutorial on the Bayesian statistical approach to inverse problems
A tutorial on the Bayesian statistical approach to inverse problems
Faaiq G. Waqar
Swati Patel
Cory M. Simon
16
5
0
15 Apr 2023
CAR-DESPOT: Causally-Informed Online POMDP Planning for Robots in
  Confounded Environments
CAR-DESPOT: Causally-Informed Online POMDP Planning for Robots in Confounded Environments
Ricardo Cannizzaro
Lars Kunze
27
10
0
13 Apr 2023
Bayesian Inference for Jump-Diffusion Approximations of Biochemical
  Reaction Networks
Bayesian Inference for Jump-Diffusion Approximations of Biochemical Reaction Networks
Derya Altıntan
Bastian Alt
Heinz Koeppl
22
0
0
13 Apr 2023
Meta-Learned Models of Cognition
Meta-Learned Models of Cognition
Marcel Binz
Ishita Dasgupta
Akshay K. Jagadish
M. Botvinick
Jane X. Wang
Eric Schulz
30
25
0
12 Apr 2023
Scallop: A Language for Neurosymbolic Programming
Scallop: A Language for Neurosymbolic Programming
Ziyang Li
Jiani Huang
Mayur Naik
ReLM
LRM
NAI
24
30
0
10 Apr 2023
PriorCVAE: scalable MCMC parameter inference with Bayesian deep
  generative modelling
PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling
Elizaveta Semenova
Prakhar Verma
Max Cairney-Leeming
Arno Solin
Samir Bhatt
Seth Flaxman
BDL
24
3
0
09 Apr 2023
A Practitioner's Guide to Bayesian Inference in Pharmacometrics using
  Pumas
A Practitioner's Guide to Bayesian Inference in Pharmacometrics using Pumas
Mohamed Tarek
J. Storópoli
Casey B. Davis
C. Elrod
Julius Krumbiegel
Chris Rackauckas
V. Ivaturi
GP
20
3
0
31 Mar 2023
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Achieving Counterfactual Fairness with Imperfect Structural Causal Model
Tri Dung Duong
Qian Li
Guandong Xu
24
2
0
26 Mar 2023
Practical and Matching Gradient Variance Bounds for Black-Box
  Variational Bayesian Inference
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
Kaiwen Wu
Jisu Oh
Jacob R. Gardner
BDL
26
7
0
18 Mar 2023
Neural Probabilistic Logic Programming in Discrete-Continuous Domains
Neural Probabilistic Logic Programming in Discrete-Continuous Domains
Lennert De Smet
Pedro Zuidberg Dos Martires
Robin Manhaeve
G. Marra
Angelika Kimmig
Luc de Raedt
NAI
19
20
0
08 Mar 2023
Computing with Categories in Machine Learning
Computing with Categories in Machine Learning
Eli Sennesh
T. Xu
Yoshihiro Maruyama
28
2
0
07 Mar 2023
CO-BED: Information-Theoretic Contextual Optimization via Bayesian
  Experimental Design
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi R. Ivanova
Joel Jennings
Tom Rainforth
Cheng Zhang
Adam Foster
34
3
0
27 Feb 2023
U-Statistics for Importance-Weighted Variational Inference
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Declarative Probabilistic Logic Programming in Discrete-Continuous
  Domains
Declarative Probabilistic Logic Programming in Discrete-Continuous Domains
Pedro Zuidberg Dos Martires
Luc de Raedt
Angelika Kimmig
29
4
0
21 Feb 2023
Adaptive Sparse Gaussian Process
Adaptive Sparse Gaussian Process
Vanessa Gómez-Verdejo
Emilio Parrado-Hernández
M. Martínez‐Ramón
6
6
0
20 Feb 2023
Previous
123456789
Next