ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09538
  4. Cited By
Pyro: Deep Universal Probabilistic Programming

Pyro: Deep Universal Probabilistic Programming

18 October 2018
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
    BDL
    GP
ArXivPDFHTML

Papers citing "Pyro: Deep Universal Probabilistic Programming"

36 / 436 papers shown
Title
Probabilistic programming for birth-death models of evolution using an
  alive particle filter with delayed sampling
Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling
J. Kudlicka
Lawrence M. Murray
F. Ronquist
Thomas B. Schon
21
10
0
10 Jul 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at
  Scale
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank Wood
28
55
0
08 Jul 2019
On Open-Universe Causal Reasoning
On Open-Universe Causal Reasoning
D. Ibeling
Thomas Icard
LRM
AI4CE
21
8
0
04 Jul 2019
GPU-based Parallel Computation Support for Stan
GPU-based Parallel Computation Support for Stan
Rok Cesnovar
S. Bronder
Davor Sluga
J. Demšar
Tadej Ciglarič
Sean Talts
Erik Štrumbelj
16
4
0
01 Jul 2019
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
30
7
0
20 Jun 2019
Normalizing flows for novelty detection in industrial time series data
Normalizing flows for novelty detection in industrial time series data
Maximilian Schmidt
M. Šimic
DRL
AI4TS
AI4CE
16
25
0
17 Jun 2019
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural
  Network Training
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training
William Harvey
Michael Teng
Frank Wood
28
4
0
13 Jun 2019
GluonTS: Probabilistic Time Series Models in Python
GluonTS: Probabilistic Time Series Models in Python
A. Alexandrov
Konstantinos Benidis
Michael Bohlke-Schneider
Valentin Flunkert
Jan Gasthaus
...
David Salinas
J. Schulz
Lorenzo Stella
Ali Caner Türkmen
Bernie Wang
BDL
AI4TS
18
114
0
12 Jun 2019
Kernelized Capsule Networks
Kernelized Capsule Networks
Taylor W. Killian
Justin A. Goodwin
Olivia M. Brown
Sung-Hyun Son
GAN
20
2
0
07 Jun 2019
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer
  Vision
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Fredrik K. Gustafsson
Martin Danelljan
Thomas B. Schon
OOD
UQCV
BDL
30
295
0
04 Jun 2019
Multi-Turn Beam Search for Neural Dialogue Modeling
Multi-Turn Beam Search for Neural Dialogue Modeling
Ilia Kulikov
Jason D. Lee
Kyunghyun Cho
23
3
0
01 Jun 2019
Hijacking Malaria Simulators with Probabilistic Programming
Hijacking Malaria Simulators with Probabilistic Programming
Bradley Gram-Hansen
Christian Schroeder de Witt
Tom Rainforth
Philip Torr
Yee Whye Teh
A. G. Baydin
25
8
0
29 May 2019
Combining Sentiment Lexica with a Multi-View Variational Autoencoder
Combining Sentiment Lexica with a Multi-View Variational Autoencoder
Alexander Miserlis Hoyle
Lawrence Wolf-Sonkin
Hanna M. Wallach
Ryan Cotterell
Isabelle Augenstein
11
9
0
05 Apr 2019
A semi-supervised deep learning algorithm for abnormal EEG
  identification
A semi-supervised deep learning algorithm for abnormal EEG identification
Subhrajit Roy
Kiran Kate
Martin Hirzel
6
3
0
19 Mar 2019
Applying Probabilistic Programming to Affective Computing
Applying Probabilistic Programming to Affective Computing
Desmond C. Ong
Harold Soh
Jamil Zaki
Noah D. Goodman
19
20
0
15 Mar 2019
Variational Bayesian Optimal Experimental Design
Variational Bayesian Optimal Experimental Design
Adam Foster
M. Jankowiak
Eli Bingham
Paul Horsfall
Yee Whye Teh
Tom Rainforth
Noah D. Goodman
8
131
0
13 Mar 2019
Tensor Variable Elimination for Plated Factor Graphs
Tensor Variable Elimination for Plated Factor Graphs
F. Obermeyer
Eli Bingham
M. Jankowiak
Justin T. Chiu
Neeraj Pradhan
Alexander M. Rush
Noah D. Goodman
27
23
0
08 Feb 2019
ProBO: Versatile Bayesian Optimization Using Any Probabilistic
  Programming Language
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
W. Neiswanger
Kirthevasan Kandasamy
Barnabás Póczós
J. Schneider
Eric P. Xing
33
17
0
31 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
30
42
0
17 Dec 2018
Bayesian Layers: A Module for Neural Network Uncertainty
Bayesian Layers: A Module for Neural Network Uncertainty
Dustin Tran
Michael W. Dusenberry
Mark van der Wilk
Danijar Hafner
UQCV
BDL
19
120
0
10 Dec 2018
Joint Mapping and Calibration via Differentiable Sensor Fusion
Joint Mapping and Calibration via Differentiable Sensor Fusion
Jonathan P. Chen
F. Obermeyer
V. Lyapunov
L. Gueguen
Noah D. Goodman
21
0
0
21 Nov 2018
Simple, Distributed, and Accelerated Probabilistic Programming
Simple, Distributed, and Accelerated Probabilistic Programming
Like Hui
Matthew Hoffman
Siyuan Ma
Christopher Suter
Srinivas Vasudevan
Alexey Radul
M. Belkin
Rif A. Saurous
BDL
22
56
0
05 Nov 2018
Importance of Search and Evaluation Strategies in Neural Dialogue
  Modeling
Importance of Search and Evaluation Strategies in Neural Dialogue Modeling
Ilia Kulikov
Alexander H. Miller
Kyunghyun Cho
Jason Weston
29
83
0
02 Nov 2018
Closed Form Variational Objectives For Bayesian Neural Networks with a
  Single Hidden Layer
Closed Form Variational Objectives For Bayesian Neural Networks with a Single Hidden Layer
M. Jankowiak
BDL
16
2
0
02 Nov 2018
Dialogue Natural Language Inference
Dialogue Natural Language Inference
Sean Welleck
Jason Weston
Arthur Szlam
Kyunghyun Cho
HILM
12
250
0
01 Nov 2018
Automated learning with a probabilistic programming language: Birch
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
14
61
0
02 Oct 2018
Compiling Stan to Generative Probabilistic Languages and Extension to
  Deep Probabilistic Programming
Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming
Guillaume Baudart
Javier Burroni
Martin Hirzel
Louis Mandel
Avraham Shinnar
BDL
11
4
0
30 Sep 2018
Machine Teaching of Active Sequential Learners
Machine Teaching of Active Sequential Learners
Tomi Peltola
M. Çelikok
Pedram Daee
Samuel Kaski
11
25
0
08 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank Wood
26
31
0
20 Jul 2018
Tensor Monte Carlo: particle methods for the GPU era
Tensor Monte Carlo: particle methods for the GPU era
Laurence Aitchison
BDL
DRL
22
13
0
22 Jun 2018
Pathwise Derivatives for Multivariate Distributions
Pathwise Derivatives for Multivariate Distributions
M. Jankowiak
Theofanis Karaletsos
17
11
0
05 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
180
0
30 May 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank Wood
BDL
9
23
0
26 May 2018
Multi-Fidelity Reinforcement Learning with Gaussian Processes
Multi-Fidelity Reinforcement Learning with Gaussian Processes
Varun Suryan
Nahush Gondhalekar
Pratap Tokekar
11
3
0
18 Dec 2017
SaberLDA: Sparsity-Aware Learning of Topic Models on GPUs
SaberLDA: Sparsity-Aware Learning of Topic Models on GPUs
Kaiwei Li
Jianfei Chen
Wenguang Chen
Jun Zhu
14
21
0
08 Oct 2016
Pareto Smoothed Importance Sampling
Pareto Smoothed Importance Sampling
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
15
236
0
09 Jul 2015
Previous
123456789