ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11953
  4. Cited By
Failing Loudly: An Empirical Study of Methods for Detecting Dataset
  Shift

Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift

29 October 2018
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
ArXivPDFHTML

Papers citing "Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift"

26 / 26 papers shown
Title
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts
M. Zarlenga
Gabriele Dominici
Pietro Barbiero
Z. Shams
M. Jamnik
KELM
57
0
0
24 Apr 2025
Monitor and Recover: A Paradigm for Future Research on Distribution Shift in Learning-Enabled Cyber-Physical Systems
Monitor and Recover: A Paradigm for Future Research on Distribution Shift in Learning-Enabled Cyber-Physical Systems
Vivian Lin
Insup Lee
27
0
0
18 Apr 2025
In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation
In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation
Mohammad Mehdi Rastikerdar
Jin Huang
Hui Guan
Deepak Ganesan
54
0
0
12 Sep 2024
Learning Run-time Safety Monitors for Machine Learning Components
Learning Run-time Safety Monitors for Machine Learning Components
Ozan Vardal
Richard Hawkins
Colin Paterson
Chiara Picardi
Daniel Omeiza
Lars Kunze
Ibrahim Habli
25
0
0
23 Jun 2024
Combine and Conquer: A Meta-Analysis on Data Shift and
  Out-of-Distribution Detection
Combine and Conquer: A Meta-Analysis on Data Shift and Out-of-Distribution Detection
Eduardo Dadalto
F. Alberge
Pierre Duhamel
Pablo Piantanida
OODD
21
0
0
23 Jun 2024
Open-Source Drift Detection Tools in Action: Insights from Two Use Cases
Open-Source Drift Detection Tools in Action: Insights from Two Use Cases
Rieke Müller
Mohamed Abdelaal
Davor Stjelja
9
0
0
29 Apr 2024
Out-of-Distribution Detection using Maximum Entropy Coding
Out-of-Distribution Detection using Maximum Entropy Coding
M. Abolfazli
Mohammad Zaeri Amirani
Anders Høst-Madsen
June Zhang
A. Bratincsák
OOD
19
0
0
25 Apr 2024
SupEuclid: Extremely Simple, High Quality OoD Detection with Supervised
  Contrastive Learning and Euclidean Distance
SupEuclid: Extremely Simple, High Quality OoD Detection with Supervised Contrastive Learning and Euclidean Distance
J. Haas
OODD
8
0
0
21 Aug 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
20
3
0
20 Aug 2023
Addressing caveats of neural persistence with deep graph persistence
Addressing caveats of neural persistence with deep graph persistence
Leander Girrbach
Anders Christensen
Ole Winther
Zeynep Akata
A. Sophia Koepke
GNN
11
1
0
20 Jul 2023
Rectifying Group Irregularities in Explanations for Distribution Shift
Rectifying Group Irregularities in Explanations for Distribution Shift
Adam Stein
Yinjun Wu
Eric Wong
Mayur Naik
20
1
0
25 May 2023
DC4L: Distribution Shift Recovery via Data-Driven Control for Deep
  Learning Models
DC4L: Distribution Shift Recovery via Data-Driven Control for Deep Learning Models
Vivian Lin
Kuk Jin Jang
Souradeep Dutta
Michele Caprio
O. Sokolsky
Insup Lee
OOD
21
6
0
20 Feb 2023
Testing for context-dependent changes in neural encoding in naturalistic
  experiments
Testing for context-dependent changes in neural encoding in naturalistic experiments
Ye Chen
Carl Harris
Xiaoyu Ma
Zheng Li
Francisco Câmara Pereira
Charles Y.Zheng
24
0
0
17 Nov 2022
Explanation Shift: Detecting distribution shifts on tabular data via the
  explanation space
Explanation Shift: Detecting distribution shifts on tabular data via the explanation space
Carlos Mougan
Klaus Broelemann
Gjergji Kasneci
T. Tiropanis
Steffen Staab
FAtt
25
7
0
22 Oct 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
11
16
0
25 Aug 2022
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Vincent Jeanselme
Maria De-Arteaga
Zhe Zhang
Jessica Barrett
Brian D. M. Tom
FaML
31
11
0
13 Aug 2022
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
Anthony Sicilia
Katherine Atwell
Malihe Alikhani
Seong Jae Hwang
BDL
29
9
0
12 Jul 2022
Distilling Model Failures as Directions in Latent Space
Distilling Model Failures as Directions in Latent Space
Saachi Jain
Hannah Lawrence
Ankur Moitra
A. Madry
9
88
0
29 Jun 2022
Diagnosis and Prognosis of COVID-19 Disease Using Routine Blood Values
  and LogNNet Neural Network
Diagnosis and Prognosis of COVID-19 Disease Using Routine Blood Values and LogNNet Neural Network
M. T. Huyut
Andrei Velichko
11
32
0
20 May 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
Active Learning Over Multiple Domains in Natural Language Tasks
Active Learning Over Multiple Domains in Natural Language Tasks
Shayne Longpre
Julia Reisler
E. G. Huang
Yi Lu
Andrew J. Frank
Nikhil Ramesh
Chris DuBois
OOD
17
13
0
01 Feb 2022
RapidRead: Global Deployment of State-of-the-art Radiology AI for a
  Large Veterinary Teleradiology Practice
RapidRead: Global Deployment of State-of-the-art Radiology AI for a Large Veterinary Teleradiology Practice
Michael Fitzke
Conrad Stack
Andre Dourson
Rodrigo M. B. Santana
Diane U Wilson
L. Ziemer
Arjun Soin
M. Lungren
Paul Fisher
Mark Parkinson
LM&MA
MedIm
11
5
0
09 Nov 2021
Natural Attribute-based Shift Detection
Natural Attribute-based Shift Detection
Jeonghoon Park
Jimin Hong
Radhika Dua
Daehoon Gwak
Yixuan Li
Jaegul Choo
E. Choi
OOD
17
3
0
18 Oct 2021
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
105
349
0
04 Oct 2021
Pulling Up by the Causal Bootstraps: Causal Data Augmentation for
  Pre-training Debiasing
Pulling Up by the Causal Bootstraps: Causal Data Augmentation for Pre-training Debiasing
Sindhu C. M. Gowda
Shalmali Joshi
Haoran Zhang
Marzyeh Ghassemi
CML
11
8
0
27 Aug 2021
Combining p-values via averaging
Combining p-values via averaging
V. Vovk
Ruodu Wang
FedML
52
205
0
20 Dec 2012
1