Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1810.12750
Cited By
Gaussian Process Conditional Density Estimation
30 October 2018
Vincent Dutordoir
Hugh Salimbeni
M. Deisenroth
J. Hensman
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gaussian Process Conditional Density Estimation"
36 / 36 papers shown
Title
Conditional Density Estimation with Histogram Trees
Neural Information Processing Systems (NeurIPS), 2024
Lincen Yang
Matthijs van Leeuwen
176
2
0
15 Oct 2024
Conditional Diffusion Models are Minimax-Optimal and Manifold-Adaptive for Conditional Distribution Estimation
International Conference on Learning Representations (ICLR), 2024
Rong Tang
Lizhen Lin
Yun Yang
DiffM
191
4
0
30 Sep 2024
Markov Balance Satisfaction Improves Performance in Strictly Batch Offline Imitation Learning
AAAI Conference on Artificial Intelligence (AAAI), 2024
Rishabh Agrawal
Nathan Dahlin
Rahul Jain
Ashutosh Nayyar
OffRL
203
1
0
17 Aug 2024
Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders
Christian Toth
Christian Knoll
Franz Pernkopf
Robert Peharz
CML
431
6
0
22 Feb 2024
Conditional Kernel Imitation Learning for Continuous State Environments
Conference on Learning for Dynamics & Control (L4DC), 2023
Rishabh Agrawal
Nathan Dahlin
Rahul Jain
A. Nayyar
186
1
0
24 Aug 2023
Efficient Uncertainty Quantification and Reduction for Over-Parameterized Neural Networks
Neural Information Processing Systems (NeurIPS), 2023
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCV
252
9
0
09 Jun 2023
Bivariate Causal Discovery using Bayesian Model Selection
International Conference on Machine Learning (ICML), 2023
Anish Dhir
Samuel Power
Mark van der Wilk
CML
250
6
0
05 Jun 2023
Kernel Density Bayesian Inverse Reinforcement Learning
Aishwarya Mandyam
Didong Li
Jiayu Yao
Diana Cai
Andrew Jones
Barbara E. Engelhardt
OffRL
BDL
295
3
0
13 Mar 2023
IB-UQ: Information bottleneck based uncertainty quantification for neural function regression and neural operator learning
Journal of Computational Physics (JCP), 2023
Ling Guo
Hao Wu
Wenwen Zhou
Yan Wang
Tao Zhou
UQCV
292
21
0
07 Feb 2023
Evaluating Aleatoric Uncertainty via Conditional Generative Models
Ziyi Huang
Henry Lam
Haofeng Zhang
PER
UD
137
6
0
09 Jun 2022
DeepLSS: breaking parameter degeneracies in large scale structure with deep learning analysis of combined probes
Physical Review X (PRX), 2022
T. Kacprzak
J. Fluri
159
16
0
17 Mar 2022
Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalizing Flow
European Signal Processing Conference (EUSIPCO), 2022
Xiongjie Chen
Yunpeng Li
175
8
0
16 Mar 2022
Non-Gaussian Gaussian Processes for Few-Shot Regression
Marcin Sendera
Jacek Tabor
A. Nowak
Andrzej Bedychaj
Massimiliano Patacchiola
Tomasz Trzciñski
Przemysław Spurek
Maciej Ziȩba
192
20
0
26 Oct 2021
Quantifying Epistemic Uncertainty in Deep Learning
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCV
BDL
UD
PER
397
15
0
23 Oct 2021
Probabilistic Time Series Forecasts with Autoregressive Transformation Models
David Rügamer
Philipp F. M. Baumann
Thomas Kneib
Torsten Hothorn
AI4TS
337
13
0
15 Oct 2021
Deconvolutional Density Network: Modeling Free-Form Conditional Distributions
AAAI Conference on Artificial Intelligence (AAAI), 2021
Bing Chen
Mazharul Islam
Jisuo Gao
Lin Wang
BDL
CML
241
8
0
29 May 2021
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
205
27
0
12 Apr 2021
Continuous Conditional Generative Adversarial Networks (cGAN) with Generator Regularization
Yufeng Zheng
Yunkai Zhang
Zeyu Zheng
GAN
112
9
0
27 Mar 2021
Predicting the probability distribution of bus travel time to move towards reliable planning of public transport services
Léa Ricard
G. Desaulniers
Andrea Lodi
Louis-Martin Rousseau
AI4TS
61
2
0
03 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
1.1K
61
0
27 Dec 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
368
35
0
03 Nov 2020
Conditional Density Estimation via Weighted Logistic Regressions
Yiping Guo
H. Bondell
68
0
0
21 Oct 2020
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
Neural Information Processing Systems (NeurIPS), 2020
A. Tompkins
Rafael Oliveira
F. Ramos
215
6
0
09 Oct 2020
Modulating Scalable Gaussian Processes for Expressive Statistical Learning
Pattern Recognition (Pattern Recognit.), 2020
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
155
4
0
29 Aug 2020
CD-split and HPD-split: efficient conformal regions in high dimensions
Journal of machine learning research (JMLR), 2020
Rafael Izbicki
Gilson T. Shimizu
R. Stern
633
70
0
24 Jul 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
233
10
0
18 Jun 2020
Wasserstein Random Forests and Applications in Heterogeneous Treatment Effects
Qiming Du
Gérard Biau
Franccois Petit
R. Porcher
CML
BDL
181
7
0
08 Jun 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
236
99
0
02 Mar 2020
Testing Goodness of Fit of Conditional Density Models with Kernels
Conference on Uncertainty in Artificial Intelligence (UAI), 2020
Wittawat Jitkrittum
Heishiro Kanagawa
Bernhard Schölkopf
186
29
0
24 Feb 2020
Noise Regularization for Conditional Density Estimation
Jonas Rothfuss
Fabio Ferreira
S. Boehm
Simon Walther
Maxim Ulrich
Tamim Asfour
Andreas Krause
141
36
0
21 Jul 2019
Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Jean-François Ton
Lucian Chan
Yee Whye Teh
Dino Sejdinovic
121
13
0
05 Jun 2019
Kernel Instrumental Variable Regression
Neural Information Processing Systems (NeurIPS), 2019
Rahul Singh
M. Sahani
Arthur Gretton
608
190
0
01 Jun 2019
Learning with Succinct Common Representation Based on Wyner's Common Information
J. Jon Ryu
Yoojin Choi
Young-Han Kim
Mostafa El-Khamy
Jungwon Lee
DRL
GAN
94
3
0
27 May 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
International Conference on Machine Learning (ICML), 2019
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
213
45
0
14 May 2019
Large-scale Heteroscedastic Regression via Gaussian Process
Haitao Liu
Yew-Soon Ong
Jianfei Cai
BDL
264
30
0
03 Nov 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2018
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
379
801
0
03 Jul 2018
1