ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10072
  4. Cited By
The promises and pitfalls of Stochastic Gradient Langevin Dynamics

The promises and pitfalls of Stochastic Gradient Langevin Dynamics

25 November 2018
N. Brosse
Alain Durmus
Eric Moulines
ArXiv (abs)PDFHTML

Papers citing "The promises and pitfalls of Stochastic Gradient Langevin Dynamics"

50 / 60 papers shown
Title
Laplace Sample Information: Data Informativeness Through a Bayesian Lens
Laplace Sample Information: Data Informativeness Through a Bayesian Lens
Johannes Kaiser
Kristian Schwethelm
Daniel Rueckert
Georgios Kaissis
52
0
0
21 May 2025
Learning Image Fractals Using Chaotic Differentiable Point Splatting
Adarsh Djeacoumar
Felix Mujkanovic
Hans-Peter Seidel
Thomas Leimkuhler
84
1
0
24 Feb 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
175
3
0
28 Jan 2025
Diffusion Model from Scratch
Diffusion Model from Scratch
Wang Zhen
Dong Yunyun
DiffM
106
0
0
14 Dec 2024
PH-Dropout: Practical Epistemic Uncertainty Quantification for View
  Synthesis
PH-Dropout: Practical Epistemic Uncertainty Quantification for View Synthesis
Chuanhao Sun
Thanos Triantafyllou
Anthos Makris
Maja Drmač
Kai Xu
Luo Mai
Mahesh K. Marina
72
0
0
07 Oct 2024
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
S. Samsonov
Eric Moulines
Qi-Man Shao
Zhuo-Song Zhang
Alexey Naumov
97
5
0
26 May 2024
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
Lorenzo Mauri
Giacomo Zanella
81
3
0
14 May 2024
3D Gaussian Splatting as Markov Chain Monte Carlo
3D Gaussian Splatting as Markov Chain Monte Carlo
Shakiba Kheradmand
Daniel Rebain
Gopal Sharma
Weiwei Sun
Jeff Tseng
Hossam N. Isack
Abhishek Kar
Andrea Tagliasacchi
Kwang Moo Yi
3DGS
106
62
0
15 Apr 2024
Scalable Bayesian inference for the generalized linear mixed model
Scalable Bayesian inference for the generalized linear mixed model
S. Berchuck
Felipe A. Medeiros
Sayan Mukherjee
Andrea Agazzi
65
0
0
05 Mar 2024
Accelerating Neural Field Training via Soft Mining
Accelerating Neural Field Training via Soft Mining
Shakiba Kheradmand
Daniel Rebain
Gopal Sharma
Hossam N. Isack
Abhishek Kar
Andrea Tagliasacchi
Kwang Moo Yi
81
4
0
29 Nov 2023
An Empirical Bayes Framework for Open-Domain Dialogue Generation
An Empirical Bayes Framework for Open-Domain Dialogue Generation
Jing Yang Lee
Kong Aik Lee
Woon-Seng Gan
BDL
57
1
0
18 Nov 2023
PICProp: Physics-Informed Confidence Propagation for Uncertainty
  Quantification
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
211
1
0
10 Oct 2023
Langevin Quasi-Monte Carlo
Langevin Quasi-Monte Carlo
Sifan Liu
BDL
53
4
0
22 Sep 2023
Stochastic Gradient Langevin Dynamics Based on Quantization with
  Increasing Resolution
Stochastic Gradient Langevin Dynamics Based on Quantization with Increasing Resolution
Jinwuk Seok
Chang-Jae Cho
50
0
0
30 May 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo
  Algorithms
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
Thomas Pock
97
4
0
25 May 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
77
4
0
21 Apr 2023
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
67
0
0
17 Feb 2023
Improved Langevin Monte Carlo for stochastic optimization via landscape
  modification
Improved Langevin Monte Carlo for stochastic optimization via landscape modification
Michael C. H. Choi
Youjia Wang
29
2
0
08 Feb 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
  the Strongly Convex Case
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
79
9
0
19 Jan 2023
Geometric ergodicity of SGLD via reflection coupling
Geometric ergodicity of SGLD via reflection coupling
Lei Li
Jian‐Guo Liu
Yuliang Wang
92
2
0
17 Jan 2023
Langevin dynamics based algorithm e-TH$\varepsilon$O POULA for
  stochastic optimization problems with discontinuous stochastic gradient
Langevin dynamics based algorithm e-THε\varepsilonεO POULA for stochastic optimization problems with discontinuous stochastic gradient
Dongjae Lim
Ariel Neufeld
Sotirios Sabanis
Ying Zhang
66
7
0
24 Oct 2022
Data Subsampling for Bayesian Neural Networks
Data Subsampling for Bayesian Neural Networks
Eiji Kawasaki
M. Holzmann
BDL
87
1
0
17 Oct 2022
Tuning Stochastic Gradient Algorithms for Statistical Inference via
  Large-Sample Asymptotics
Tuning Stochastic Gradient Algorithms for Statistical Inference via Large-Sample Asymptotics
Jeffrey Negrea
Jun Yang
Haoyue Feng
Daniel M. Roy
Jonathan H. Huggins
53
1
0
25 Jul 2022
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
Lei Li
Yuliang Wang
95
11
0
19 Jul 2022
Variational Inference of overparameterized Bayesian Neural Networks: a
  theoretical and empirical study
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
52
6
0
08 Jul 2022
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity
  Guarantees for Langevin Monte Carlo
Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo
Krishnakumar Balasubramanian
Sinho Chewi
Murat A. Erdogdu
Adil Salim
Matthew Shunshi Zhang
108
65
0
10 Feb 2022
Posterior temperature optimized Bayesian models for inverse problems in
  medical imaging
Posterior temperature optimized Bayesian models for inverse problems in medical imaging
M. Laves
Malte Tolle
Alexander Schlaefer
Sandy Engelhardt
76
10
0
02 Feb 2022
Global convergence of optimized adaptive importance samplers
Global convergence of optimized adaptive importance samplers
Ömer Deniz Akyildiz
103
7
0
02 Jan 2022
Unadjusted Langevin algorithm for sampling a mixture of weakly smooth potentials
D. Nguyen
58
5
0
17 Dec 2021
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Tyler Farghly
Patrick Rebeschini
99
24
0
25 Nov 2021
Unsupervised PET Reconstruction from a Bayesian Perspective
Unsupervised PET Reconstruction from a Bayesian Perspective
Chenyu Shen
Wenjun Xia
H. Ye
Mingzheng Hou
Hu Chen
Yan Liu
Jiliu Zhou
Yi Zhang
137
3
0
29 Oct 2021
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDLUQCV
97
21
0
10 Oct 2021
Geometry-informed irreversible perturbations for accelerated convergence
  of Langevin dynamics
Geometry-informed irreversible perturbations for accelerated convergence of Langevin dynamics
Benjamin J. Zhang
Youssef M. Marzouk
K. Spiliopoulos
46
8
0
18 Aug 2021
Non-asymptotic estimates for TUSLA algorithm for non-convex learning
  with applications to neural networks with ReLU activation function
Non-asymptotic estimates for TUSLA algorithm for non-convex learning with applications to neural networks with ReLU activation function
Dongjae Lim
Ariel Neufeld
Sotirios Sabanis
Ying Zhang
80
20
0
19 Jul 2021
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm
  via Langevin Monte Carlo within Gibbs
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs
Vincent Plassier
Maxime Vono
Alain Durmus
Eric Moulines
70
17
0
11 Jun 2021
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated
  learning
QLSD: Quantised Langevin stochastic dynamics for Bayesian federated learning
Maxime Vono
Vincent Plassier
Alain Durmus
Aymeric Dieuleveut
Eric Moulines
FedML
93
36
0
01 Jun 2021
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient
  adaptive algorithms for neural networks
Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks
Dong-Young Lim
Sotirios Sabanis
97
12
0
28 May 2021
Efficient and Generalizable Tuning Strategies for Stochastic Gradient
  MCMC
Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC
Jeremie Coullon
Leah F. South
Christopher Nemeth
76
12
0
27 May 2021
Quantifying the mini-batching error in Bayesian inference for Adaptive
  Langevin dynamics
Quantifying the mini-batching error in Bayesian inference for Adaptive Langevin dynamics
Inass Sekkat
G. Stoltz
62
4
0
21 May 2021
On the stability of the stochastic gradient Langevin algorithm with
  dependent data stream
On the stability of the stochastic gradient Langevin algorithm with dependent data stream
Miklós Rásonyi
Kinga Tikosi
17
1
0
04 May 2021
Variational Transport: A Convergent Particle-BasedAlgorithm for
  Distributional Optimization
Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization
Zhuoran Yang
Yufeng Zhang
Yongxin Chen
Zhaoran Wang
OT
91
5
0
21 Dec 2020
Mixing it up: A general framework for Markovian statistics
Mixing it up: A general framework for Markovian statistics
Niklas Dexheimer
Claudia Strauch
Lukas Trottner
97
9
0
31 Oct 2020
Variance reduction for dependent sequences with applications to
  Stochastic Gradient MCMC
Variance reduction for dependent sequences with applications to Stochastic Gradient MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
72
6
0
16 Aug 2020
A fully data-driven approach to minimizing CVaR for portfolio of assets
  via SGLD with discontinuous updating
A fully data-driven approach to minimizing CVaR for portfolio of assets via SGLD with discontinuous updating
Sotirios Sabanis
Ying Zhang
27
7
0
02 Jul 2020
Is SGD a Bayesian sampler? Well, almost
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
77
53
0
26 Jun 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive
  stochastic gradient Langevin algorithms
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
88
26
0
25 Jun 2020
Multi-index Antithetic Stochastic Gradient Algorithm
Multi-index Antithetic Stochastic Gradient Algorithm
Mateusz B. Majka
Marc Sabate Vidales
Łukasz Szpruch
85
0
0
10 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
Analysis of Stochastic Gradient Descent in Continuous Time
Analysis of Stochastic Gradient Descent in Continuous Time
J. Latz
81
41
0
15 Apr 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
97
17
0
13 Feb 2020
12
Next