ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.10072
  4. Cited By
The promises and pitfalls of Stochastic Gradient Langevin Dynamics

The promises and pitfalls of Stochastic Gradient Langevin Dynamics

25 November 2018
N. Brosse
Alain Durmus
Eric Moulines
ArXiv (abs)PDFHTML

Papers citing "The promises and pitfalls of Stochastic Gradient Langevin Dynamics"

10 / 60 papers shown
Title
On Last-Layer Algorithms for Classification: Decoupling Representation
  from Uncertainty Estimation
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation
N. Brosse
C. Riquelme
Alice Martin
Sylvain Gelly
Eric Moulines
BDLOODUQCV
97
34
0
22 Jan 2020
Aggregated Gradient Langevin Dynamics
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
81
1
0
21 Oct 2019
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
104
47
0
04 Oct 2019
Partitioned integrators for thermodynamic parameterization of neural
  networks
Partitioned integrators for thermodynamic parameterization of neural networks
Benedict Leimkuhler
Charles Matthews
Tiffany J. Vlaar
ODL
63
22
0
30 Aug 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
81
139
0
16 Jul 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
132
37
0
23 May 2019
Revisiting clustering as matrix factorisation on the Stiefel manifold
Revisiting clustering as matrix factorisation on the Stiefel manifold
Stéphane Chrétien
Benjamin Guedj
46
3
0
11 Mar 2019
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large
  Datasets
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets
R. Cornish
Paul Vanetti
Alexandre Bouchard-Côté
George Deligiannidis
Arnaud Doucet
109
17
0
28 Jan 2019
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
120
62
0
02 Aug 2017
Quasi-stationary Monte Carlo and the ScaLE Algorithm
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
98
18
0
12 Sep 2016
Previous
12