ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.02230
  4. Cited By
Towards a Definition of Disentangled Representations

Towards a Definition of Disentangled Representations

5 December 2018
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
    OCL
    DRL
ArXivPDFHTML

Papers citing "Towards a Definition of Disentangled Representations"

42 / 92 papers shown
Title
Controlling Directions Orthogonal to a Classifier
Controlling Directions Orthogonal to a Classifier
Yilun Xu
Hao He
T. Shen
Tommi Jaakkola
61
19
0
27 Jan 2022
CoNeRF: Controllable Neural Radiance Fields
CoNeRF: Controllable Neural Radiance Fields
Kacper Kania
K. M. Yi
Marek Kowalski
Tomasz Trzciñski
Andrea Tagliasacchi
AI4CE
16
77
0
03 Dec 2021
Towards Robust and Adaptive Motion Forecasting: A Causal Representation
  Perspective
Towards Robust and Adaptive Motion Forecasting: A Causal Representation Perspective
Yuejiang Liu
Riccardo Cadei
Jonas Schweizer
Sherwin Bahmani
Alexandre Alahi
OOD
TTA
28
51
0
29 Nov 2021
Quantised Transforming Auto-Encoders: Achieving Equivariance to
  Arbitrary Transformations in Deep Networks
Quantised Transforming Auto-Encoders: Achieving Equivariance to Arbitrary Transformations in Deep Networks
Jianbo Jiao
João F. Henriques
BDL
OOD
MQ
13
2
0
25 Nov 2021
Properties from Mechanisms: An Equivariance Perspective on Identifiable
  Representation Learning
Properties from Mechanisms: An Equivariance Perspective on Identifiable Representation Learning
Kartik Ahuja
Jason S. Hartford
Yoshua Bengio
21
38
0
29 Oct 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
31
67
0
28 Oct 2021
A moment-matching metric for latent variable generative models
A moment-matching metric for latent variable generative models
Cédric Beaulac
9
1
0
04 Oct 2021
Capturing the objects of vision with neural networks
Capturing the objects of vision with neural networks
B. Peters
N. Kriegeskorte
OCL
33
56
0
07 Sep 2021
Topographic VAEs learn Equivariant Capsules
Topographic VAEs learn Equivariant Capsules
Thomas Anderson Keller
Max Welling
BDL
36
38
0
03 Sep 2021
Reimagining an autonomous vehicle
Reimagining an autonomous vehicle
Jeffrey Hawke
E. Haibo
Vijay Badrinarayanan
Alex Kendall
24
11
0
12 Aug 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
22
10
0
25 Jun 2021
BoB: BERT Over BERT for Training Persona-based Dialogue Models from
  Limited Personalized Data
BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data
Haoyu Song
Yan Wang
Kaiyan Zhang
Weinan Zhang
Ting Liu
14
115
0
11 Jun 2021
Commutative Lie Group VAE for Disentanglement Learning
Commutative Lie Group VAE for Disentanglement Learning
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
27
22
0
07 Jun 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand
  Challenges
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
53
651
0
20 Mar 2021
Counterfactual Zero-Shot and Open-Set Visual Recognition
Counterfactual Zero-Shot and Open-Set Visual Recognition
Zhongqi Yue
Tan Wang
Hanwang Zhang
Qianru Sun
Xiansheng Hua
BDL
158
192
0
01 Mar 2021
Training a Resilient Q-Network against Observational Interference
Training a Resilient Q-Network against Observational Interference
Chao-Han Huck Yang
I-Te Danny Hung
Ouyang Yi
Pin-Yu Chen
OOD
18
14
0
18 Feb 2021
Formalising Concepts as Grounded Abstractions
Formalising Concepts as Grounded Abstractions
S. Clark
Alexander Lerchner
Tamara von Glehn
O. Tieleman
Richard Tanburn
Misha Dashevskiy
Matko Bosnjak
AI4CE
11
3
0
13 Jan 2021
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
24
104
0
03 Nov 2020
Linear Disentangled Representations and Unsupervised Action Estimation
Linear Disentangled Representations and Unsupervised Action Estimation
Matthew Painter
Jonathon S. Hare
Adam Prugel-Bennett
CoGe
DRL
22
20
0
18 Aug 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
19
20
0
28 Jul 2020
Data-efficient visuomotor policy training using reinforcement learning
  and generative models
Data-efficient visuomotor policy training using reinforcement learning and generative models
Ali Ghadirzadeh
Petra Poklukar
Ville Kyrki
Danica Kragic
Mårten Björkman
OffRL
34
9
0
26 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
34
132
0
21 Jul 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
19
73
0
24 Jun 2020
Editing in Style: Uncovering the Local Semantics of GANs
Editing in Style: Uncovering the Local Semantics of GANs
Edo Collins
R. Bala
B. Price
Sabine Süsstrunk
28
225
0
29 Apr 2020
A Deeper Look at the Unsupervised Learning of Disentangled
  Representations in $β$-VAE from the Perspective of Core Object
  Recognition
A Deeper Look at the Unsupervised Learning of Disentangled Representations in βββ-VAE from the Perspective of Core Object Recognition
Harshvardhan Digvijay Sikka
OCL
OOD
BDL
DRL
19
1
0
25 Apr 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
38
44
0
18 Apr 2020
On the Sensory Commutativity of Action Sequences for Embodied Agents
On the Sensory Commutativity of Action Sequences for Embodied Agents
Hugo Caselles-Dupré
Michael Garcia Ortiz
David Filliat
14
4
0
13 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
178
313
0
07 Feb 2020
Deep Representation Learning in Speech Processing: Challenges, Recent
  Advances, and Future Trends
Deep Representation Learning in Speech Processing: Challenges, Recent Advances, and Future Trends
S. Latif
R. Rana
Sara Khalifa
Raja Jurdak
Junaid Qadir
Björn W. Schuller
AI4TS
24
81
0
02 Jan 2020
Learning to Predict Without Looking Ahead: World Models Without Forward
  Prediction
Learning to Predict Without Looking Ahead: World Models Without Forward Prediction
C. Freeman
Luke Metz
David R Ha
25
35
0
29 Oct 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
17
136
0
22 Oct 2019
Hamiltonian Generative Networks
Hamiltonian Generative Networks
Peter Toth
Danilo Jimenez Rezende
Andrew Jaegle
S. Racanière
Aleksandar Botev
I. Higgins
BDL
DRL
AI4CE
GAN
11
214
0
30 Sep 2019
Independent Subspace Analysis for Unsupervised Learning of Disentangled
  Representations
Independent Subspace Analysis for Unsupervised Learning of Disentangled Representations
Jan Stühmer
Richard E. Turner
Sebastian Nowozin
DRL
BDL
CoGe
111
25
0
05 Sep 2019
Domain-Agnostic Learning with Anatomy-Consistent Embedding for
  Cross-Modality Liver Segmentation
Domain-Agnostic Learning with Anatomy-Consistent Embedding for Cross-Modality Liver Segmentation
Junlin Yang
Nicha Dvornek
Fan Zhang
Juntang Zhuang
Julius Chapiro
Mingde Lin
James S. Duncan
FedML
OOD
MedIm
24
17
0
27 Aug 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGe
DRL
13
93
0
26 Aug 2019
Unsupervised State Representation Learning in Atari
Unsupervised State Representation Learning in Atari
Ankesh Anand
Evan Racah
Sherjil Ozair
Yoshua Bengio
Marc-Alexandre Côté
R. Devon Hjelm
SSL
27
253
0
19 Jun 2019
Learning Symmetries of Classical Integrable Systems
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
14
39
0
11 Jun 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
25
133
0
07 Jun 2019
Multi-Object Representation Learning with Iterative Variational
  Inference
Multi-Object Representation Learning with Iterative Variational Inference
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCL
SSL
13
499
0
01 Mar 2019
Counterfactuals uncover the modular structure of deep generative models
Counterfactuals uncover the modular structure of deep generative models
M. Besserve
Arash Mehrjou
Rémy Sun
Bernhard Schölkopf
DRL
BDL
DiffM
11
107
0
08 Dec 2018
Interpretable Neuron Structuring with Graph Spectral Regularization
Interpretable Neuron Structuring with Graph Spectral Regularization
Alexander Tong
David van Dijk
Jay S. Stanley
Matthew Amodio
Kristina M. Yim
R. Muhle
J. Noonan
Guy Wolf
Smita Krishnaswamy
19
6
0
30 Sep 2018
Automatically Composing Representation Transformations as a Means for
  Generalization
Automatically Composing Representation Transformations as a Means for Generalization
Michael Chang
Abhishek Gupta
Sergey Levine
Thomas L. Griffiths
21
68
0
12 Jul 2018
Previous
12