ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.09902
  4. Cited By
Invariant and Equivariant Graph Networks

Invariant and Equivariant Graph Networks

24 December 2018
Haggai Maron
Heli Ben-Hamu
Nadav Shamir
Y. Lipman
ArXivPDFHTML

Papers citing "Invariant and Equivariant Graph Networks"

50 / 128 papers shown
Title
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Enhancing Job Salary Prediction with Disentangled Composition Effect Modeling: A Neural Prototyping Approach
Yang Ji
Ying Sun
Hengshu Zhu
46
0
0
17 Mar 2025
Precoder Learning for Weighted Sum Rate Maximization
Mingyu Deng
Shengqian Han
42
0
0
06 Mar 2025
A Survey of Graph Transformers: Architectures, Theories and Applications
A Survey of Graph Transformers: Architectures, Theories and Applications
Chaohao Yuan
Kangfei Zhao
Ercan Engin Kuruoglu
Liang Wang
Tingyang Xu
Wenbing Huang
Deli Zhao
Hong Cheng
Yu Rong
55
4
0
23 Feb 2025
Data Augmentation and Regularization for Learning Group Equivariance
Oskar Nordenfors
Axel Flinth
54
0
0
10 Feb 2025
Graph Counterfactual Explainable AI via Latent Space Traversal
Graph Counterfactual Explainable AI via Latent Space Traversal
Andreas Abildtrup Hansen
Paraskevas Pegios
Anna Calissano
Aasa Feragen
OOD
BDL
AAML
83
0
0
15 Jan 2025
Optimality of Message-Passing Architectures for Sparse Graphs
Optimality of Message-Passing Architectures for Sparse Graphs
Aseem Baranwal
K. Fountoulakis
Aukosh Jagannath
81
11
0
10 Jan 2025
Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics
Lorentz-Equivariant Quantum Graph Neural Network for High-Energy Physics
Md Abrar Jahin
Md. Akmol Masud
Md Wahiduzzaman Suva
M. Mridha
Nilanjan Dey
48
1
0
03 Nov 2024
Graph Neural Networks for Edge Signals: Orientation Equivariance and Invariance
Graph Neural Networks for Edge Signals: Orientation Equivariance and Invariance
Dominik Fuchsgruber
Tim Poštuvan
Stephan Günnemann
Simon Geisler
39
2
0
22 Oct 2024
Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
Yonatan Sverdlov
Ido Springer
Nadav Dym
35
2
0
09 Oct 2024
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks
Ashwin Samudre
Mircea Petrache
Brian D. Nord
Shubhendu Trivedi
44
2
0
18 Sep 2024
Improving Equivariant Model Training via Constraint Relaxation
Improving Equivariant Model Training via Constraint Relaxation
Stefanos Pertigkiozoglou
Evangelos Chatzipantazis
Shubhendu Trivedi
Kostas Daniilidis
39
4
0
23 Aug 2024
Variational Inference Failures Under Model Symmetries: Permutation
  Invariant Posteriors for Bayesian Neural Networks
Variational Inference Failures Under Model Symmetries: Permutation Invariant Posteriors for Bayesian Neural Networks
Yoav Gelberg
Tycho F. A. van der Ouderaa
Mark van der Wilk
Y. Gal
AAML
37
4
0
10 Aug 2024
Neural Networks Trained by Weight Permutation are Universal Approximators
Neural Networks Trained by Weight Permutation are Universal Approximators
Yongqiang Cai
Gaohang Chen
Zhonghua Qiao
69
1
0
01 Jul 2024
Transport of Algebraic Structure to Latent Embeddings
Transport of Algebraic Structure to Latent Embeddings
Samuel Pfrommer
Brendon G. Anderson
Somayeh Sojoudi
31
0
0
27 May 2024
Graph as Point Set
Graph as Point Set
Xiyuan Wang
Pan Li
Muhan Zhang
GNN
3DPC
PINN
42
4
0
05 May 2024
CSA-Trans: Code Structure Aware Transformer for AST
CSA-Trans: Code Structure Aware Transformer for AST
Saeyoon Oh
Shin Yoo
38
1
0
07 Apr 2024
On the Theoretical Expressive Power and the Design Space of Higher-Order
  Graph Transformers
On the Theoretical Expressive Power and the Design Space of Higher-Order Graph Transformers
Cai Zhou
Rose Yu
Yusu Wang
34
7
0
04 Apr 2024
On the Completeness of Invariant Geometric Deep Learning Models
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
33
2
0
07 Feb 2024
Interpreting Equivariant Representations
Interpreting Equivariant Representations
Andreas Abildtrup Hansen
Anna Calissano
Aasa Feragen
47
1
0
23 Jan 2024
Graph Metanetworks for Processing Diverse Neural Architectures
Graph Metanetworks for Processing Diverse Neural Architectures
Derek Lim
Haggai Maron
Marc T. Law
Jonathan Lorraine
James Lucas
AI4CE
31
30
0
07 Dec 2023
A Comparison Between Invariant and Equivariant Classical and Quantum
  Graph Neural Networks
A Comparison Between Invariant and Equivariant Classical and Quantum Graph Neural Networks
Roy T. Forestano
Marçal Comajoan Cara
Gopal Ramesh Dahale
Zhongtian Dong
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
GNN
24
8
0
30 Nov 2023
Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning Approach
Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning Approach
G. Marchetti
Gabriele Cesa
Kumar Pratik
Arash Behboodi
31
2
0
14 Nov 2023
Equivariant Deep Weight Space Alignment
Equivariant Deep Weight Space Alignment
Aviv Navon
Aviv Shamsian
Ethan Fetaya
Gal Chechik
Nadav Dym
Haggai Maron
26
21
0
20 Oct 2023
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie
  Algebras
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
40
1
0
06 Oct 2023
The Expressive Power of Graph Neural Networks: A Survey
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Graph Automorphism Group Equivariant Neural Networks
Graph Automorphism Group Equivariant Neural Networks
Edward Pearce-Crump
William J. Knottenbelt
23
1
0
15 Jul 2023
Weisfeiler and Leman Go Measurement Modeling: Probing the Validity of
  the WL Test
Weisfeiler and Leman Go Measurement Modeling: Probing the Validity of the WL Test
Arjun Subramonian
Adina Williams
Maximilian Nickel
Yizhou Sun
Levent Sagun
21
0
0
11 Jul 2023
Any-dimensional equivariant neural networks
Any-dimensional equivariant neural networks
Eitan Levin
Mateo Díaz
21
6
0
10 Jun 2023
Extending the Design Space of Graph Neural Networks by Rethinking
  Folklore Weisfeiler-Lehman
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
Jiarui Feng
Lecheng Kong
Hao Liu
Dacheng Tao
Fuhai Li
Muhan Zhang
Yixin Chen
44
10
0
05 Jun 2023
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
35
22
0
27 May 2023
Investigating how ReLU-networks encode symmetries
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
24
6
0
26 May 2023
Making Vision Transformers Truly Shift-Equivariant
Making Vision Transformers Truly Shift-Equivariant
Renan A. Rojas-Gomez
Teck-Yian Lim
Minh N. Do
Raymond A. Yeh
ViT
22
7
0
25 May 2023
Categorification of Group Equivariant Neural Networks
Categorification of Group Equivariant Neural Networks
Edward Pearce-Crump
22
3
0
27 Apr 2023
An Empirical Study of Realized GNN Expressiveness
An Empirical Study of Realized GNN Expressiveness
Yanbo Wang
Muhan Zhang
39
10
0
16 Apr 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
32
5
0
23 Mar 2023
Fast computation of permutation equivariant layers with the partition
  algebra
Fast computation of permutation equivariant layers with the partition algebra
Charles Godfrey
Michael G. Rawson
Davis Brown
Henry Kvinge
38
6
0
10 Mar 2023
Technical report: Graph Neural Networks go Grammatical
Technical report: Graph Neural Networks go Grammatical
Jason Piquenot
Aldo Moscatelli
Maxime Bérar
Pierre Héroux
R. Raveaux
Jean-Yves Ramel
Sébastien Adam
25
1
0
02 Mar 2023
Equivariant Polynomials for Graph Neural Networks
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
Equivariant Architectures for Learning in Deep Weight Spaces
Equivariant Architectures for Learning in Deep Weight Spaces
Aviv Navon
Aviv Shamsian
Idan Achituve
Ethan Fetaya
Gal Chechik
Haggai Maron
36
63
0
30 Jan 2023
On the Connection Between MPNN and Graph Transformer
On the Connection Between MPNN and Graph Transformer
Chen Cai
Truong Son-Hy
Rose Yu
Yusu Wang
33
51
0
27 Jan 2023
Graph Neural Networks can Recover the Hidden Features Solely from the
  Graph Structure
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
Ryoma Sato
31
5
0
26 Jan 2023
A Generalization of ViT/MLP-Mixer to Graphs
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
36
88
0
27 Dec 2022
Connecting Permutation Equivariant Neural Networks and Partition
  Diagrams
Connecting Permutation Equivariant Neural Networks and Partition Diagrams
Edward Pearce-Crump
25
9
0
16 Dec 2022
Brauer's Group Equivariant Neural Networks
Brauer's Group Equivariant Neural Networks
Edward Pearce-Crump
AI4CE
13
15
0
16 Dec 2022
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
42
23
0
15 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
27
2
0
14 Nov 2022
Boosting the Cycle Counting Power of Graph Neural Networks with
  I$^2$-GNNs
Boosting the Cycle Counting Power of Graph Neural Networks with I2^22-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
81
47
0
22 Oct 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
31
84
0
18 Oct 2022
Representation Theory for Geometric Quantum Machine Learning
Representation Theory for Geometric Quantum Machine Learning
Michael Ragone
Paolo Braccia
Quynh T. Nguyen
Louis Schatzki
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
AI4CE
26
73
0
14 Oct 2022
Uplifting Message Passing Neural Network with Graph Original Information
Uplifting Message Passing Neural Network with Graph Original Information
Xiao Liu
Lijun Zhang
Hui Guan
GNN
26
2
0
08 Oct 2022
123
Next