ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.01608
  4. Cited By
Scaling description of generalization with number of parameters in deep
  learning

Scaling description of generalization with number of parameters in deep learning

6 January 2019
Mario Geiger
Arthur Jacot
S. Spigler
Franck Gabriel
Levent Sagun
Stéphane dÁscoli
Giulio Biroli
Clément Hongler
M. Wyart
ArXivPDFHTML

Papers citing "Scaling description of generalization with number of parameters in deep learning"

32 / 32 papers shown
Title
The Double Descent Behavior in Two Layer Neural Network for Binary Classification
The Double Descent Behavior in Two Layer Neural Network for Binary Classification
Chathurika S Abeykoon
A. Beknazaryan
Hailin Sang
51
1
0
27 Apr 2025
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
91
2
0
08 Jul 2024
When are ensembles really effective?
When are ensembles really effective?
Ryan Theisen
Hyunsuk Kim
Yaoqing Yang
Liam Hodgkinson
Michael W. Mahoney
FedML
UQCV
27
15
0
21 May 2023
Gradient flow in the gaussian covariate model: exact solution of
  learning curves and multiple descent structures
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
Continual task learning in natural and artificial agents
Continual task learning in natural and artificial agents
Timo Flesch
Andrew M. Saxe
Christopher Summerfield
CLL
35
24
0
10 Oct 2022
Approximation results for Gradient Descent trained Shallow Neural
  Networks in $1d$
Approximation results for Gradient Descent trained Shallow Neural Networks in 1d1d1d
R. Gentile
G. Welper
ODL
46
6
0
17 Sep 2022
Learning sparse features can lead to overfitting in neural networks
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
29
23
0
24 Jun 2022
Contrasting random and learned features in deep Bayesian linear
  regression
Contrasting random and learned features in deep Bayesian linear regression
Jacob A. Zavatone-Veth
William L. Tong
C. Pehlevan
BDL
MLT
28
26
0
01 Mar 2022
A generalization gap estimation for overparameterized models via the
  Langevin functional variance
A generalization gap estimation for overparameterized models via the Langevin functional variance
Akifumi Okuno
Keisuke Yano
30
1
0
07 Dec 2021
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Multi-scale Feature Learning Dynamics: Insights for Double Descent
Mohammad Pezeshki
Amartya Mitra
Yoshua Bengio
Guillaume Lajoie
58
25
0
06 Dec 2021
On the Effectiveness of Neural Ensembles for Image Classification with
  Small Datasets
On the Effectiveness of Neural Ensembles for Image Classification with Small Datasets
Lorenzo Brigato
Luca Iocchi
UQCV
22
0
0
29 Nov 2021
Model, sample, and epoch-wise descents: exact solution of gradient flow
  in the random feature model
Model, sample, and epoch-wise descents: exact solution of gradient flow in the random feature model
A. Bodin
N. Macris
29
13
0
22 Oct 2021
Learning through atypical "phase transitions" in overparameterized
  neural networks
Learning through atypical "phase transitions" in overparameterized neural networks
Carlo Baldassi
Clarissa Lauditi
Enrico M. Malatesta
R. Pacelli
Gabriele Perugini
R. Zecchina
26
26
0
01 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of
  Overparameterized Machine Learning
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
29
71
0
06 Sep 2021
Repulsive Deep Ensembles are Bayesian
Repulsive Deep Ensembles are Bayesian
Francesco DÁngelo
Vincent Fortuin
UQCV
BDL
46
93
0
22 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
26
24
0
11 Jun 2021
Understanding Double Descent Requires a Fine-Grained Bias-Variance
  Decomposition
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
29
92
0
04 Nov 2020
Review: Deep Learning in Electron Microscopy
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
26
79
0
17 Sep 2020
Multiple Descent: Design Your Own Generalization Curve
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
18
61
0
03 Aug 2020
Geometric compression of invariant manifolds in neural nets
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
52
34
0
22 Jul 2020
GShard: Scaling Giant Models with Conditional Computation and Automatic
  Sharding
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Dmitry Lepikhin
HyoukJoong Lee
Yuanzhong Xu
Dehao Chen
Orhan Firat
Yanping Huang
M. Krikun
Noam M. Shazeer
Z. Chen
MoE
20
1,106
0
30 Jun 2020
An analytic theory of shallow networks dynamics for hinge loss
  classification
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
19
19
0
19 Jun 2020
On the training dynamics of deep networks with $L_2$ regularization
On the training dynamics of deep networks with L2L_2L2​ regularization
Aitor Lewkowycz
Guy Gur-Ari
30
53
0
15 Jun 2020
Double Double Descent: On Generalization Errors in Transfer Learning
  between Linear Regression Tasks
Double Double Descent: On Generalization Errors in Transfer Learning between Linear Regression Tasks
Yehuda Dar
Richard G. Baraniuk
23
19
0
12 Jun 2020
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy
  Regime
Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime
Stéphane dÁscoli
Maria Refinetti
Giulio Biroli
Florent Krzakala
93
152
0
02 Mar 2020
Generalisation error in learning with random features and the hidden
  manifold model
Generalisation error in learning with random features and the hidden manifold model
Federica Gerace
Bruno Loureiro
Florent Krzakala
M. Mézard
Lenka Zdeborová
25
165
0
21 Feb 2020
Implicit Regularization of Random Feature Models
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
18
82
0
19 Feb 2020
A Model of Double Descent for High-dimensional Binary Linear
  Classification
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
29
143
0
13 Nov 2019
Asymptotics of Wide Networks from Feynman Diagrams
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
19
113
0
25 Sep 2019
The generalization error of random features regression: Precise
  asymptotics and double descent curve
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
39
624
0
14 Aug 2019
A type of generalization error induced by initialization in deep neural
  networks
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
49
0
19 May 2019
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
179
1,185
0
30 Nov 2014
1