ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.05761
  4. Cited By
Attentive Neural Processes
v1v2 (latest)

Attentive Neural Processes

17 January 2019
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
ArXiv (abs)PDFHTML

Papers citing "Attentive Neural Processes"

50 / 292 papers shown
Title
Resolving Node Identifiability in Graph Neural Processes via Laplacian Spectral Encodings
Resolving Node Identifiability in Graph Neural Processes via Laplacian Spectral Encodings
Zimo Yan
Zheng Xie
Chang-rui Liu
Y. X. R. Wang
71
0
0
24 Nov 2025
MIST: Mutual Information Via Supervised Training
MIST: Mutual Information Via Supervised Training
German Gritsai
Megan Richards
Maxime Méloux
Kyunghyun Cho
Maxime Peyrard
OOD
283
0
0
24 Nov 2025
Real-Time Performance Analysis of Multi-Fidelity Residual Physics-Informed Neural Process-Based State Estimation for Robotic Systems
Real-Time Performance Analysis of Multi-Fidelity Residual Physics-Informed Neural Process-Based State Estimation for Robotic Systems
Devin Hunter
Chinwendu Enyioha
133
0
0
11 Nov 2025
Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Context-aware Learned Mesh-based Simulation via Trajectory-Level Meta-Learning
Philipp Dahlinger
Niklas Freymuth
Tai Hoang
Tobias Würth
Michael Volpp
Luise Kärger
Gerhard Neumann
AI4CE
244
0
0
07 Nov 2025
Uncertainty-Aware Diagnostics for Physics-Informed Machine Learning
Uncertainty-Aware Diagnostics for Physics-Informed Machine Learning
Mara Daniels
Liam Hodgkinson
Michael W. Mahoney
PINNAI4CE
287
0
0
30 Oct 2025
Neural Variational Dropout Processes
Neural Variational Dropout ProcessesInternational Conference on Learning Representations (ICLR), 2025
Insu Jeon
Youngjin Park
Gunhee Kim
BDLUQCV
291
3
0
22 Oct 2025
Functional Distribution Networks (FDN)
Functional Distribution Networks (FDN)
Omer Haq
UQCV
174
0
0
20 Oct 2025
On Foundation Models for Temporal Point Processes to Accelerate Scientific Discovery
On Foundation Models for Temporal Point Processes to Accelerate Scientific Discovery
David Berghaus
Patrick Seifner
K. Cvejoski
Ramses J. Sanchez
AI4TSAI4CE
120
0
0
14 Oct 2025
MaNGO - Adaptable Graph Network Simulators via Meta-Learning
MaNGO - Adaptable Graph Network Simulators via Meta-Learning
Philipp Dahlinger
Tai Hoang
Denis Blessing
Niklas Freymuth
Gerhard Neumann
AI4CE
213
1
0
07 Oct 2025
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
MetaVLA: Unified Meta Co-training For Efficient Embodied Adaption
Chen Li
Zhantao Yang
Han Zhang
Fangyi Chen
Chenchen Zhu
Anudeepsekhar Bolimera
Marios Savvides
VLM
128
0
0
07 Oct 2025
Multi-task neural diffusion processes for uncertainty-quantified wind power prediction
Multi-task neural diffusion processes for uncertainty-quantified wind power prediction
Joseph Rawson
Domniki Ladopoulou
Petros Dellaportas
DiffM
100
0
0
03 Oct 2025
A Multi-Scale Graph Neural Process with Cross-Drug Co-Attention for Drug-Drug Interactions Prediction
A Multi-Scale Graph Neural Process with Cross-Drug Co-Attention for Drug-Drug Interactions Prediction
Zimo Yan
Jie Zhang
Zheng Xie
Y. Song
Hao Li
90
1
0
18 Sep 2025
Distance-informed Neural Processes
Distance-informed Neural Processes
Aishwarya Venkataramanan
Joachim Denzler
UQCVBDL
139
1
0
26 Aug 2025
GraphPPD: Posterior Predictive Modelling for Graph-Level Inference
GraphPPD: Posterior Predictive Modelling for Graph-Level Inference
Soumyasundar Pal
Liheng Ma
Amine Natik
Yingxue Zhang
Mark Coates
UQCV
100
0
0
23 Aug 2025
Amortized In-Context Mixed Effect Transformer Models: A Zero-Shot Approach for Pharmacokinetics
Amortized In-Context Mixed Effect Transformer Models: A Zero-Shot Approach for Pharmacokinetics
César Ali Ojeda Marin
W. Huisinga
Purity Kavwele
Niklas Hartung
104
1
0
21 Aug 2025
Neural Bridge Processes
Neural Bridge Processes
Jian Xu
Y. Liu
Qibin Zhao
John Paisley
Delu Zeng
DiffM
1.2K
0
0
10 Aug 2025
Uncertainty-aware Accurate Elevation Modeling for Off-road Navigation via Neural Processes
Uncertainty-aware Accurate Elevation Modeling for Off-road Navigation via Neural Processes
Sanghun Jung
Daehoon Gwak
Byron Boots
James Hays
80
0
0
05 Aug 2025
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Vahid Balazadeh
Hamidreza Kamkari
Valentin Thomas
Benson Li
Junwei Ma
Jesse C. Cresswell
Rahul G. Krishnan
CML
186
5
0
09 Jun 2025
ALINE: Joint Amortization for Bayesian Inference and Active Data Acquisition
ALINE: Joint Amortization for Bayesian Inference and Active Data Acquisition
Daolang Huang
Xinyi Wen
Ayush Bharti
Samuel Kaski
Luigi Acerbi
185
2
0
08 Jun 2025
End-to-End Probabilistic Framework for Learning with Hard Constraints
End-to-End Probabilistic Framework for Learning with Hard Constraints
Utkarsh Utkarsh
Danielle C. Maddix
Ruijun Ma
Michael W. Mahoney
Yuyang Wang
AI4TSBDL
340
1
0
08 Jun 2025
Unsupervised Meta-Testing with Conditional Neural Processes for Hybrid Meta-Reinforcement LearningIEEE Robotics and Automation Letters (RA-L), 2024
S. E. Ada
Emre Ugur
BDL
170
3
0
04 Jun 2025
Dynamic Estimation Loss Control in Variational Quantum Sensing via Online Conformal Inference
Dynamic Estimation Loss Control in Variational Quantum Sensing via Online Conformal Inference
I. Nikoloska
Hamdi Joudeh
Ruud van Sloun
Osvaldo Simeone
156
2
0
29 May 2025
BOFormer: Learning to Solve Multi-Objective Bayesian Optimization via Non-Markovian RL
BOFormer: Learning to Solve Multi-Objective Bayesian Optimization via Non-Markovian RLInternational Conference on Learning Representations (ICLR), 2025
Yu-Heng Hung
Kai-Jie Lin
Yu-Heng Lin
Chien-Yi Wang
Cheng Sun
Ping-Chun Hsieh
230
4
0
28 May 2025
Probabilistic Interactive 3D Segmentation with Hierarchical Neural Processes
Probabilistic Interactive 3D Segmentation with Hierarchical Neural Processes
Jie Liu
Pan Zhou
Zehao Xiao
Jiayi Shen
Wenzhe Yin
Jan-Jakob Sonke
E. Gavves
312
1
0
03 May 2025
LoC-LIC: Low Complexity Learned Image Coding Using Hierarchical Feature Transforms
LoC-LIC: Low Complexity Learned Image Coding Using Hierarchical Feature Transforms
Ayman A. Ameen
Thomas Richter
André Kaup
243
0
0
30 Apr 2025
Learning Attentive Neural Processes for Planning with Pushing Actions
Learning Attentive Neural Processes for Planning with Pushing Actions
Atharv Jain
Seiji Shaw
Nicholas Roy
912
1
0
24 Apr 2025
MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Zimo Yan
Jie Zhang
Zheng Xie
Chang-rui Liu
Wenshu Fan
Yiping Song
346
1
0
22 Apr 2025
Exploring Pseudo-Token Approaches in Transformer Neural Processes
Exploring Pseudo-Token Approaches in Transformer Neural Processes
Jose Lara-Rangel
Nanze Chen
Fengzhe Zhang
167
1
0
19 Apr 2025
Representation Learning for Tabular Data: A Comprehensive Survey
Representation Learning for Tabular Data: A Comprehensive Survey
Jun-Peng Jiang
Si-Yang Liu
Hao-Run Cai
Qile Zhou
Han-Jia Ye
LMTD
355
15
0
17 Apr 2025
Sparse Gaussian Neural Processes
Sparse Gaussian Neural ProcessesSymposium on Advances in Approximate Bayesian Inference (AABI), 2025
Tommy Rochussen
Vincent Fortuin
BDLUQCV
410
0
0
02 Apr 2025
Continual learning via probabilistic exchangeable sequence modelling
Continual learning via probabilistic exchangeable sequence modelling
Hanwen Xing
Christopher Yau
CLLBDL
294
0
0
26 Mar 2025
Meta Learning not to Learn: Robustly Informing Meta-Learning under Nuisance-Varying Families
Louis McConnell
OODCML
221
0
0
06 Mar 2025
PABBO: Preferential Amortized Black-Box OptimizationInternational Conference on Learning Representations (ICLR), 2025
Xinyu Zhang
Daolang Huang
Samuel Kaski
Julien Martinelli
219
4
0
02 Mar 2025
Dimension Agnostic Neural Processes
Dimension Agnostic Neural ProcessesInternational Conference on Learning Representations (ICLR), 2025
Hyungi Lee
Chaeyun Jang
Dongbok Lee
Juho Lee
UQCVAI4CE
222
3
0
28 Feb 2025
In-Context Learning of Stochastic Differential Equations with Foundation Inference Models
In-Context Learning of Stochastic Differential Equations with Foundation Inference Models
Patrick Seifner
K. Cvejoski
David Berghaus
C. Ojeda
Ramses J. Sanchez
DiffM
259
6
0
26 Feb 2025
Compact Latent Representation for Image Compression (CLRIC)
Compact Latent Representation for Image Compression (CLRIC)International Conference on Information Photonics (ICIP), 2025
Ayman A. Ameen
Thomas Richter
André Kaup
349
0
0
24 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
257
9
0
10 Feb 2025
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
George Whittle
Juliusz Ziomek
Jacob Rawling
Michael A. Osborne
450
8
0
04 Feb 2025
Geometric Neural Process Fields
Geometric Neural Process Fields
Wenzhe Yin
Zehao Xiao
Jiayi Shen
Yunlu Chen
Cees G. M. Snoek
Jan-Jakob Sonke
E. Gavves
AI4CE
316
0
0
04 Feb 2025
Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Bridge the Inference Gaps of Neural Processes via Expectation MaximizationInternational Conference on Learning Representations (ICLR), 2025
Q. Wang
Marco Federici
H. V. Hoof
UQCVBDL
279
17
0
08 Jan 2025
DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting
DistPred: A Distribution-Free Probabilistic Inference Method for Regression and ForecastingKnowledge Discovery and Data Mining (KDD), 2024
Daojun Liang
Haixia Zhang
Dongfeng Yuan
UQCV
332
2
0
08 Jan 2025
Stochastic Process Learning via Operator Flow Matching
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
510
5
0
07 Jan 2025
Robust Neural Processes for Noisy Data
Robust Neural Processes for Noisy Data
Chen Shapira
Dan Rosenbaum
292
2
0
03 Nov 2024
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Amortized Probabilistic Conditioning for Optimization, Simulation and InferenceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2024
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
372
17
0
20 Oct 2024
Gridded Transformer Neural Processes for Large Unstructured
  Spatio-Temporal Data
Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data
Matthew Ashman
Cristiana-Diana Diaconu
Eric Langezaal
Adrian Weller
Richard E. Turner
AI4TS
241
3
0
09 Oct 2024
Active Evaluation Acquisition for Efficient LLM Benchmarking
Active Evaluation Acquisition for Efficient LLM Benchmarking
Yang Li
Jie Ma
Miguel Ballesteros
Yassine Benajiba
Graham Horwood
ELM
207
12
0
08 Oct 2024
Contextual Document Embeddings
Contextual Document EmbeddingsInternational Conference on Learning Representations (ICLR), 2024
John X. Morris
Alexander M. Rush
444
15
0
03 Oct 2024
Reducing Variance in Meta-Learning via Laplace Approximation for
  Regression Tasks
Reducing Variance in Meta-Learning via Laplace Approximation for Regression Tasks
Alfredo Reichlin
Gustaf Tegnér
Miguel Vasco
Hang Yin
Mårten Björkman
Danica Kragic
209
0
0
02 Oct 2024
Expanding Expressivity in Transformer Models with MöbiusAttention
Expanding Expressivity in Transformer Models with MöbiusAttention
Anna-Maria Halacheva
M. Nayyeri
Steffen Staab
195
1
0
08 Sep 2024
An Offline Meta Black-box Optimization Framework for Adaptive Design of
  Urban Traffic Light Management Systems
An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management SystemsKnowledge Discovery and Data Mining (KDD), 2024
Taeyoung Yun
Kanghoon Lee
Sujin Yun
Ilmyung Kim
Won-Woo Jung
Min-Cheol Kwon
Kyujin Choi
Yoohyeon Lee
Jinkyoo Park
270
1
0
14 Aug 2024
123456
Next