Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.05761
Cited By
Attentive Neural Processes
17 January 2019
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attentive Neural Processes"
50 / 266 papers shown
Title
Probabilistic Interactive 3D Segmentation with Hierarchical Neural Processes
Jie Liu
Pan Zhou
Zehao Xiao
Jiayi Shen
Wenzhe Yin
J. Sonke
E. Gavves
31
0
0
03 May 2025
LoC-LIC: Low Complexity Learned Image Coding Using Hierarchical Feature Transforms
Ayman A. Ameen
Thomas Richter
André Kaup
49
0
0
30 Apr 2025
Learning Attentive Neural Processes for Planning with Pushing Actions
Atharv Jain
Seiji Shaw
Nicholas Roy
119
0
0
24 Apr 2025
MetaMolGen: A Neural Graph Motif Generation Model for De Novo Molecular Design
Zimo Yan
Jie Zhang
Zheng Xie
Chang-rui Liu
Y. Liu
Yiping Song
36
0
0
22 Apr 2025
Exploring Pseudo-Token Approaches in Transformer Neural Processes
Jose Lara-Rangel
Nanze Chen
Fengzhe Zhang
27
0
0
19 Apr 2025
Representation Learning for Tabular Data: A Comprehensive Survey
Jun-Peng Jiang
Si-Yang Liu
Hao-Run Cai
Qile Zhou
Han-Jia Ye
LMTD
46
0
0
17 Apr 2025
Sparse Gaussian Neural Processes
Tommy Rochussen
Vincent Fortuin
BDL
UQCV
56
0
0
02 Apr 2025
Meta Learning not to Learn: Robustly Informing Meta-Learning under Nuisance-Varying Families
Louis McConnell
OOD
CML
50
0
0
06 Mar 2025
PABBO: Preferential Amortized Black-Box Optimization
Xinyu Zhang
Daolang Huang
Samuel Kaski
Julien Martinelli
34
0
0
02 Mar 2025
Dimension Agnostic Neural Processes
Hyungi Lee
Chaeyun Jang
Dongbok Lee
Juho Lee
UQCV
AI4CE
49
0
0
28 Feb 2025
Foundation Inference Models for Stochastic Differential Equations: A Transformer-based Approach for Zero-shot Function Estimation
Patrick Seifner
K. Cvejoski
David Berghaus
C. Ojeda
Ramses J. Sanchez
DiffM
48
1
0
26 Feb 2025
Compact Latent Representation for Image Compression (CLRIC)
Ayman A. Ameen
Thomas Richter
André Kaup
54
0
0
24 Feb 2025
Amortized In-Context Bayesian Posterior Estimation
Sarthak Mittal
Niels Leif Bracher
Guillaume Lajoie
P. Jaini
Marcus A. Brubaker
62
1
0
10 Feb 2025
Geometric Neural Process Fields
Wenzhe Yin
Zehao Xiao
Jiayi Shen
Yunlu Chen
Cees G. M. Snoek
J. Sonke
E. Gavves
AI4CE
41
0
0
04 Feb 2025
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
46
1
0
10 Jan 2025
DistPred: A Distribution-Free Probabilistic Inference Method for Regression and Forecasting
Daojun Liang
Haixia Zhang
Dongfeng Yuan
UQCV
74
0
0
08 Jan 2025
Bridge the Inference Gaps of Neural Processes via Expectation Maximization
Q. Wang
Marco Federici
H. V. Hoof
UQCV
BDL
39
13
0
08 Jan 2025
Robust Neural Processes for Noisy Data
Chen Shapira
Dan Rosenbaum
24
1
0
03 Nov 2024
Amortized Probabilistic Conditioning for Optimization, Simulation and Inference
Paul E. Chang
Nasrulloh Loka
Daolang Huang
Ulpu Remes
Samuel Kaski
Luigi Acerbi
AI4CE
49
4
0
20 Oct 2024
Gridded Transformer Neural Processes for Large Unstructured Spatio-Temporal Data
Matthew Ashman
Cristiana-Diana Diaconu
Eric Langezaal
Adrian Weller
Richard E. Turner
AI4TS
36
1
0
09 Oct 2024
Active Evaluation Acquisition for Efficient LLM Benchmarking
Yang Li
Jie Ma
Miguel Ballesteros
Yassine Benajiba
Graham Horwood
ELM
29
1
0
08 Oct 2024
Contextual Document Embeddings
John X. Morris
Alexander M. Rush
19
7
0
03 Oct 2024
Reducing Variance in Meta-Learning via Laplace Approximation for Regression Tasks
Alfredo Reichlin
Gustaf Tegnér
Miguel Vasco
Hang Yin
Mårten Björkman
Danica Kragic
31
0
0
02 Oct 2024
Expanding Expressivity in Transformer Models with MöbiusAttention
Anna-Maria Halacheva
M. Nayyeri
Steffen Staab
25
1
0
08 Sep 2024
An Offline Meta Black-box Optimization Framework for Adaptive Design of Urban Traffic Light Management Systems
Taeyoung Yun
Kanghoon Lee
Sujin Yun
Ilmyung Kim
Won-Woo Jung
Min-Cheol Kwon
Kyujin Choi
Yoohyeon Lee
Jinkyoo Park
21
0
0
14 Aug 2024
Robust Fast Adaptation from Adversarially Explicit Task Distribution Generation
Cheems Wang
Yiqin Lv
Yixiu Mao
Yun Qu
Yi Tian Xu
Xiangyang Ji
OOD
TTA
53
6
0
28 Jul 2024
In-Context In-Context Learning with Transformer Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Adrian Weller
Richard E. Turner
26
3
0
19 Jun 2024
Approximately Equivariant Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Adrian Weller
W. Bruinsma
Richard E. Turner
BDL
36
1
0
19 Jun 2024
Translation Equivariant Transformer Neural Processes
Matthew Ashman
Cristiana-Diana Diaconu
Junhyuck Kim
Lakee Sivaraya
Stratis Markou
James Requeima
W. Bruinsma
Richard E. Turner
46
4
0
18 Jun 2024
Estimating the Hallucination Rate of Generative AI
Andrew Jesson
Nicolas Beltran-Velez
Quentin Chu
Sweta Karlekar
Jannik Kossen
Yarin Gal
John P. Cunningham
David M. Blei
46
6
0
11 Jun 2024
System-Aware Neural ODE Processes for Few-Shot Bayesian Optimization
Jixiang Qing
Becky D Langdon
Robert M. Lee
B. Shafei
Mark van der Wilk
Calvin Tsay
Ruth Misener
32
1
0
04 Jun 2024
FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation
Kun Chen
Tao Chen
Peng Ye
Hao Chen
Kang Chen
Tao Han
Wanli Ouyang
Lei Bai
25
1
0
03 Jun 2024
Does learning the right latent variables necessarily improve in-context learning?
Sarthak Mittal
Eric Elmoznino
Léo Gagnon
Sangnie Bhardwaj
Dhanya Sridhar
Guillaume Lajoie
32
4
0
29 May 2024
Latent Energy-Based Odyssey: Black-Box Optimization via Expanded Exploration in the Energy-Based Latent Space
Peiyu Yu
Dinghuai Zhang
Hengzhi He
Xiaojian Ma
Ruiyao Miao
...
Deqian Kong
Ruiqi Gao
Jianwen Xie
Guang Cheng
Ying Nian Wu
48
5
0
27 May 2024
Rényi Neural Processes
Xuesong Wang
He Zhao
Edwin V. Bonilla
UQCV
BDL
32
0
0
25 May 2024
Spectral Convolutional Conditional Neural Processes
Peiman Mohseni
Nick Duffield
32
3
0
19 Apr 2024
On permutation-invariant neural networks
Masanari Kimura
Ryotaro Shimizu
Yuki Hirakawa
Ryosuke Goto
Yuki Saito
OOD
AAML
38
12
0
26 Mar 2024
Real-time Adaptation for Condition Monitoring Signal Prediction using Label-aware Neural Processes
Seokhyun Chung
Raed Al Kontar
34
0
0
25 Mar 2024
Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs
S. C. Mouli
Danielle C. Maddix
S. Alizadeh
Gaurav Gupta
Andrew Stuart
Michael W. Mahoney
Yuyang Wang
UQCV
AI4CE
40
2
0
15 Mar 2024
Online Adaptation of Language Models with a Memory of Amortized Contexts
Jihoon Tack
Jaehyung Kim
Eric Mitchell
Jinwoo Shin
Yee Whye Teh
Jonathan Richard Schwarz
KELM
47
18
0
07 Mar 2024
Learning to Defer to a Population: A Meta-Learning Approach
Dharmesh Tailor
Aditya Patra
Rajeev Verma
Putra Manggala
Eric Nalisnick
20
9
0
05 Mar 2024
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Ruijia Niu
D. Wu
Kai Kim
Yi-An Ma
D. Watson‐Parris
Rose Yu
AI4CE
27
2
0
29 Feb 2024
Unsupervised Zero-Shot Reinforcement Learning via Functional Reward Encodings
Kevin Frans
Seohong Park
Pieter Abbeel
Sergey Levine
OffRL
42
10
0
27 Feb 2024
Beyond Kalman Filters: Deep Learning-Based Filters for Improved Object Tracking
Momir Adzemovic
Predrag Tadić
Andrija Petrović
Mladen Nikolic
31
4
0
15 Feb 2024
Towards Generative Abstract Reasoning: Completing Raven's Progressive Matrix via Rule Abstraction and Selection
Fan Shi
Bin Li
Xiangyang Xue
ReLM
LRM
31
1
0
18 Jan 2024
Space and Time Continuous Physics Simulation From Partial Observations
Steeven Janny
Madiha Nadri Wolf
Julie Digne
Christian Wolf
AI4CE
34
5
0
17 Jan 2024
Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning
Jens Müller
Lars Kühmichel
Martin Rohbeck
Stefan T. Radev
Ullrich Kothe
OOD
34
0
0
15 Dec 2023
Meta-learning to Calibrate Gaussian Processes with Deep Kernels for Regression Uncertainty Estimation
Tomoharu Iwata
Atsutoshi Kumagai
BDL
UQCV
22
1
0
13 Dec 2023
Target-Free Compound Activity Prediction via Few-Shot Learning
Peter Eckmann
Jake Anderson
Michael K. Gilson
Rose Yu
11
1
0
27 Nov 2023
Latent Task-Specific Graph Network Simulators
Philipp Dahlinger
Niklas Freymuth
Michael Volpp
Tai Hoang
Gerhard Neumann
AI4CE
27
0
0
09 Nov 2023
1
2
3
4
5
6
Next