ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.05761
  4. Cited By
Attentive Neural Processes
v1v2 (latest)

Attentive Neural Processes

17 January 2019
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
ArXiv (abs)PDFHTML

Papers citing "Attentive Neural Processes"

42 / 292 papers shown
Title
MetaSDF: Meta-learning Signed Distance Functions
MetaSDF: Meta-learning Signed Distance Functions
Vincent Sitzmann
E. R. Chan
Richard Tucker
Noah Snavely
Gordon Wetzstein
157
271
0
17 Jun 2020
Implicit Neural Representations with Periodic Activation Functions
Implicit Neural Representations with Periodic Activation Functions
Vincent Sitzmann
Julien N. P. Martel
Alexander W. Bergman
David B. Lindell
Gordon Wetzstein
AI4TS
1.2K
3,106
0
17 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
167
3
0
15 Jun 2020
Task-similarity Aware Meta-learning through Nonparametric Kernel
  Regression
Task-similarity Aware Meta-learning through Nonparametric Kernel Regression
Arun Venkitaraman
Anders Hansson
B. Wahlberg
255
8
0
12 Jun 2020
Learning to Learn Kernels with Variational Random Features
Learning to Learn Kernels with Variational Random FeaturesInternational Conference on Machine Learning (ICML), 2020
Xiantong Zhen
Hao Sun
Yingjun Du
Jun Xu
Yilong Yin
Ling Shao
Cees G. M. Snoek
DRL
219
34
0
11 Jun 2020
Neural Physicist: Learning Physical Dynamics from Image Sequences
Neural Physicist: Learning Physical Dynamics from Image Sequences
Baocheng Zhu
Shijun Wang
James Y. Zhang
AI4CE
96
1
0
09 Jun 2020
Meta Learning as Bayes Risk Minimization
Meta Learning as Bayes Risk Minimization
S. Maeda
Toshiki Nakanishi
Masanori Koyama
BDL
67
1
0
02 Jun 2020
From Prediction to Prescription: Evolutionary Optimization of
  Non-Pharmaceutical Interventions in the COVID-19 Pandemic
From Prediction to Prescription: Evolutionary Optimization of Non-Pharmaceutical Interventions in the COVID-19 Pandemic
Risto Miikkulainen
Olivier Francon
Elliot Meyerson
Xin Qiu
Elisa Canzani
Babak Hodjat
112
3
0
28 May 2020
Kernel Self-Attention in Deep Multiple Instance Learning
Kernel Self-Attention in Deep Multiple Instance Learning
Dawid Rymarczyk
Adriana Borowa
Jacek Tabor
Bartosz Zieliñski
SSL
189
7
0
25 May 2020
Differentiable Mapping Networks: Learning Structured Map Representations
  for Sparse Visual Localization
Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization
Peter Karkus
A. Angelova
Vincent Vanhoucke
Rico Jonschkowski
156
11
0
19 May 2020
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients
Empirical Bayes Transductive Meta-Learning with Synthetic GradientsInternational Conference on Learning Representations (ICLR), 2020
S. Hu
Pablo G. Moreno
Yanghua Xiao
Xin Shen
G. Obozinski
Neil D. Lawrence
Andreas C. Damianou
BDL
185
135
0
27 Apr 2020
CAZSL: Zero-Shot Regression for Pushing Models by Generalizing Through
  Context
CAZSL: Zero-Shot Regression for Pushing Models by Generalizing Through ContextIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2020
Wenyu Zhang
Skyler Seto
Devesh K. Jha
253
5
0
26 Mar 2020
Energy-Based Processes for Exchangeable Data
Energy-Based Processes for Exchangeable DataInternational Conference on Machine Learning (ICML), 2020
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
199
13
0
17 Mar 2020
Modeling Continuous Stochastic Processes with Dynamic Normalizing Flows
Modeling Continuous Stochastic Processes with Dynamic Normalizing FlowsNeural Information Processing Systems (NeurIPS), 2020
Ruizhi Deng
B. Chang
Marcus A. Brubaker
Greg Mori
Andreas M. Lehrmann
282
58
0
24 Feb 2020
Deep Fourier Kernel for Self-Attentive Point Processes
Deep Fourier Kernel for Self-Attentive Point Processes
Shixiang Zhu
Minghe Zhang
Ruyi Ding
Yao Xie
3DPC
218
3
0
17 Feb 2020
$π$VAE: a stochastic process prior for Bayesian deep learning with
  MCMC
πππVAE: a stochastic process prior for Bayesian deep learning with MCMC
Swapnil Mishra
Seth Flaxman
Tresnia Berah
Harrison Zhu
Mikko S. Pakkanen
Samir Bhatt
BDL
186
4
0
17 Feb 2020
Local Nonparametric Meta-Learning
Local Nonparametric Meta-Learning
Wonjoon Goo
S. Niekum
167
4
0
09 Feb 2020
Model Inversion Networks for Model-Based Optimization
Model Inversion Networks for Model-Based OptimizationNeural Information Processing Systems (NeurIPS), 2019
Aviral Kumar
Sergey Levine
OffRL
201
109
0
31 Dec 2019
MetaFun: Meta-Learning with Iterative Functional Updates
MetaFun: Meta-Learning with Iterative Functional UpdatesInternational Conference on Machine Learning (ICML), 2019
Jin Xu
Jean-François Ton
Hyunjik Kim
Adam R. Kosiorek
Yee Whye Teh
322
75
0
05 Dec 2019
Convolutional Conditional Neural Processes
Convolutional Conditional Neural ProcessesInternational Conference on Learning Representations (ICLR), 2019
Jonathan Gordon
W. Bruinsma
Andrew Y. K. Foong
James Requeima
Yann Dubois
Richard Turner
BDL
524
187
0
29 Oct 2019
Probabilistic Trajectory Prediction for Autonomous Vehicles with
  Attentive Recurrent Neural Process
Probabilistic Trajectory Prediction for Autonomous Vehicles with Attentive Recurrent Neural Process
Jiacheng Zhu
Shenghao Qin
Wenshuo Wang
Ding Zhao
150
11
0
17 Oct 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDLAI4TS
129
40
0
17 Oct 2019
Neural Approximation of an Auto-Regressive Process through Confidence
  Guided Sampling
Neural Approximation of an Auto-Regressive Process through Confidence Guided Sampling
Y. Yoo
Sanghyuk Chun
Sangdoo Yun
Jung-Woo Ha
Jaejun Yoo
102
0
0
15 Oct 2019
Neural Multisensory Scene Inference
Neural Multisensory Scene InferenceNeural Information Processing Systems (NeurIPS), 2019
Jae Hyun Lim
Pedro H. O. Pinheiro
Negar Rostamzadeh
C. Pal
Sungjin Ahn
155
10
0
06 Oct 2019
Wasserstein Neural Processes
Wasserstein Neural Processes
Andrew N. Carr
Jared Nielson
David Wingate
BDL
87
2
0
01 Oct 2019
Omnipush: accurate, diverse, real-world dataset of pushing dynamics with
  RGB-D video
Omnipush: accurate, diverse, real-world dataset of pushing dynamics with RGB-D videoIEEE/RJS International Conference on Intelligent RObots and Systems (IROS), 2019
Maria Bauzá
Ferran Alet
Yen-Chen Lin
Tomas Lozano-Perez
L. Kaelbling
Phillip Isola
Alberto Rodriguez
268
23
0
01 Oct 2019
Transferable Neural Processes for Hyperparameter Optimization
Transferable Neural Processes for Hyperparameter Optimization
Ying Wei
P. Zhao
Huaxiu Yao
Junzhou Huang
BDL
107
8
0
07 Sep 2019
Sequential Neural Processes
Sequential Neural ProcessesNeural Information Processing Systems (NeurIPS), 2019
Gautam Singh
Jaesik Yoon
Youngsung Son
Sungjin Ahn
BDLAI4TS
257
89
0
24 Jun 2019
The Functional Neural Process
The Functional Neural ProcessNeural Information Processing Systems (NeurIPS), 2019
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
198
81
0
19 Jun 2019
Fast and Flexible Multi-Task Classification Using Conditional Neural
  Adaptive Processes
Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive ProcessesNeural Information Processing Systems (NeurIPS), 2019
James Requeima
Jonathan Gordon
J. Bronskill
Sebastian Nowozin
Richard Turner
159
260
0
18 Jun 2019
Noise Contrastive Meta-Learning for Conditional Density Estimation using
  Kernel Mean Embeddings
Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean EmbeddingsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Jean-François Ton
Lucian Chan
Yee Whye Teh
Dino Sejdinovic
121
13
0
05 Jun 2019
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual
  Estimation with an I/O Kernel
Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O KernelInternational Conference on Learning Representations (ICLR), 2019
Xin Qiu
Elliot Meyerson
Risto Miikkulainen
UQCV
195
58
0
03 Jun 2019
Adaptive Deep Kernel Learning
Adaptive Deep Kernel Learning
Prudencio Tossou
Basile Dura
François Laviolette
M. Marchand
Alexandre Lacoste
190
29
0
28 May 2019
Reinforcement Learning for Robotics and Control with Active Uncertainty
  Reduction
Reinforcement Learning for Robotics and Control with Active Uncertainty Reduction
Narendra Patwardhan
Zequn Wang
86
2
0
15 May 2019
Graph Element Networks: adaptive, structured computation and memory
Graph Element Networks: adaptive, structured computation and memory
Ferran Alet
Adarsh K. Jeewajee
Maria Bauzá
Alberto Rodriguez
Tomas Lozano-Perez
L. Kaelbling
AI4CEGNN
341
86
0
18 Apr 2019
Meta-Learning surrogate models for sequential decision making
Meta-Learning surrogate models for sequential decision making
Alexandre Galashov
Jonathan Richard Schwarz
Hyunjik Kim
M. Garnelo
D. Saxton
Pushmeet Kohli
S. M. Ali Eslami
Yee Whye Teh
BDLOffRL
203
25
0
28 Mar 2019
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Graph Neural Processes: Towards Bayesian Graph Neural Networks
Andrew N. Carr
David Wingate
BDL
169
13
0
26 Feb 2019
Meta-Amortized Variational Inference and Learning
Meta-Amortized Variational Inference and Learning
Mike Wu
Kristy Choi
Noah D. Goodman
Stefano Ermon
OODVLMBDLDRL
180
39
0
05 Feb 2019
On the Limitations of Representing Functions on Sets
On the Limitations of Representing Functions on Sets
E. Wagstaff
F. Fuchs
Martin Engelcke
Ingmar Posner
Michael A. Osborne
317
175
0
25 Jan 2019
Meta Architecture Search
Meta Architecture Search
Albert Eaton Shaw
Wei Wei
Weiyang Liu
Le Song
Bo Dai
BDL
147
38
0
22 Dec 2018
Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Probabilistic Semantic Inpainting with Pixel Constrained CNNs
Emilien Dupont
S. Suresha
116
15
0
08 Oct 2018
Set Transformer: A Framework for Attention-based Permutation-Invariant
  Neural Networks
Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks
Juho Lee
Yoonho Lee
Jungtaek Kim
Adam R. Kosiorek
Seungjin Choi
Yee Whye Teh
380
270
0
01 Oct 2018
Previous
123456