ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.05761
  4. Cited By
Attentive Neural Processes

Attentive Neural Processes

17 January 2019
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
ArXivPDFHTML

Papers citing "Attentive Neural Processes"

50 / 266 papers shown
Title
Diffusion Generative Models in Infinite Dimensions
Diffusion Generative Models in Infinite Dimensions
Gavin Kerrigan
Justin Ley
Padhraic Smyth
DiffM
48
27
0
01 Dec 2022
Evidential Conditional Neural Processes
Evidential Conditional Neural Processes
Deepshikha Pandey
Qi Yu
BDL
EDL
UQCV
12
13
0
30 Nov 2022
Differentiable User Models
Differentiable User Models
Alex Hamalainen
Mustafa Mert cCelikok
Samuel Kaski
23
1
0
29 Nov 2022
Graph Sequential Neural ODE Process for Link Prediction on Dynamic and
  Sparse Graphs
Graph Sequential Neural ODE Process for Link Prediction on Dynamic and Sparse Graphs
Linhao Luo
Reza Haffari
Shirui Pan
AI4TS
28
30
0
15 Nov 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
37
7
0
14 Nov 2022
Modeling Temporal Data as Continuous Functions with Stochastic Process
  Diffusion
Modeling Temporal Data as Continuous Functions with Stochastic Process Diffusion
Marin Bilos
Kashif Rasul
Anderson Schneider
Yuriy Nevmyvaka
Stephan Günnemann
DiffM
22
32
0
04 Nov 2022
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Yohan Jung
Jinkyoo Park
BDL
14
0
0
22 Oct 2022
Inference from Real-World Sparse Measurements
Inference from Real-World Sparse Measurements
Arnaud Pannatier
Kyle Matoba
F. Fleuret
AI4TS
20
0
0
20 Oct 2022
A unified model for continuous conditional video prediction
A unified model for continuous conditional video prediction
Xi Ye
Guillaume-Alexandre Bilodeau
AI4TS
37
7
0
11 Oct 2022
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Yuan Yin
Matthieu Kirchmeyer
Jean-Yves Franceschi
A. Rakotomamonjy
Patrick Gallinari
AI4CE
17
48
0
29 Sep 2022
Spectral Diffusion Processes
Spectral Diffusion Processes
Angus Phillips
Thomas Seror
M. Hutchinson
Valentin De Bortoli
Arnaud Doucet
Emile Mathieu
DiffM
56
14
0
28 Sep 2022
NIERT: Accurate Numerical Interpolation through Unifying Scattered Data
  Representations using Transformer Encoder
NIERT: Accurate Numerical Interpolation through Unifying Scattered Data Representations using Transformer Encoder
Shi-qi Ding
Boyang Xia
Milong Ren
Dongbo Bu
20
2
0
19 Sep 2022
Compositional Law Parsing with Latent Random Functions
Compositional Law Parsing with Latent Random Functions
Fan Shi
Bin Li
Xiangyang Xue
CoGe
19
4
0
15 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
73
24
0
01 Sep 2022
IDNP: Interest Dynamics Modeling using Generative Neural Processes for
  Sequential Recommendation
IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential Recommendation
Jing Du
Zesheng Ye
Lina Yao
Bin Guo
Zhiwen Yu
AI4TS
19
12
0
09 Aug 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function
  Classes
What Can Transformers Learn In-Context? A Case Study of Simple Function Classes
Shivam Garg
Dimitris Tsipras
Percy Liang
Gregory Valiant
21
447
0
01 Aug 2022
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
  Sequence Modeling
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
Tung Nguyen
Aditya Grover
BDL
UQCV
19
99
0
09 Jul 2022
Scheduling Planting Time Through Developing an Optimization Model and
  Analysis of Time Series Growing Degree Units
Scheduling Planting Time Through Developing an Optimization Model and Analysis of Time Series Growing Degree Units
Javad Ansarifar
Faezeh Akhavizadegan
Lizhi Wang
9
1
0
02 Jul 2022
CARD: Classification and Regression Diffusion Models
CARD: Classification and Regression Diffusion Models
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
43
109
0
15 Jun 2022
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
Yumeng Li
Ni Gao
Hanna Ziesche
Gerhard Neumann
26
5
0
14 Jun 2022
Multi-fidelity Hierarchical Neural Processes
Multi-fidelity Hierarchical Neural Processes
D. Wu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
8
13
0
10 Jun 2022
Neural Diffusion Processes
Neural Diffusion Processes
Vincent Dutordoir
Alan D. Saul
Zoubin Ghahramani
F. Simpson
DiffM
38
37
0
08 Jun 2022
A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
  Cloud
A Meta Reinforcement Learning Approach for Predictive Autoscaling in the Cloud
Siqiao Xue
C. Qu
X. Shi
Cong Liao
Shiyi Zhu
...
Yun Hu
Lei Lei
Yang Zheng
Jianguo Li
James Y. Zhang
54
37
0
31 May 2022
Few-Shot Diffusion Models
Few-Shot Diffusion Models
Giorgio Giannone
Didrik Nielsen
Ole Winther
DiffM
183
49
0
30 May 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
25
2
0
27 May 2022
Semi-Parametric Inducing Point Networks and Neural Processes
Semi-Parametric Inducing Point Networks and Neural Processes
R. Rastogi
Yair Schiff
Alon Hacohen
Zhaozhi Li
I-Hsiang Lee
Yuntian Deng
M. Sabuncu
Volodymyr Kuleshov
3DPC
24
6
0
24 May 2022
Variable-Input Deep Operator Networks
Variable-Input Deep Operator Networks
Michael Prasthofer
Tim De Ryck
Siddhartha Mishra
42
23
0
23 May 2022
Meta-Learning Regrasping Strategies for Physical-Agnostic Objects
Meta-Learning Regrasping Strategies for Physical-Agnostic Objects
Ni Gao
Jingyu Zhang
Ruijie Chen
Ngo Anh Vien
Hanna Ziesche
Gerhard Neumann
35
10
0
23 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit
  Composite Kernel
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
30
4
0
15 May 2022
Neural Processes with Stochastic Attention: Paying more attention to the
  context dataset
Neural Processes with Stochastic Attention: Paying more attention to the context dataset
Mingyu Kim
Kyeongryeol Go
Se-Young Yun
24
20
0
11 Apr 2022
Canonical Mean Filter for Almost Zero-Shot Multi-Task classification
Canonical Mean Filter for Almost Zero-Shot Multi-Task classification
Yong Li
Heng Wang
Xiang Ye
10
0
0
08 Apr 2022
Multidimensional Belief Quantification for Label-Efficient Meta-Learning
Multidimensional Belief Quantification for Label-Efficient Meta-Learning
Deepshikha Pandey
Qi Yu
UQCV
11
10
0
23 Mar 2022
Practical Conditional Neural Processes Via Tractable Dependent
  Predictions
Practical Conditional Neural Processes Via Tractable Dependent Predictions
Stratis Markou
James Requeima
W. Bruinsma
Anna Vaughan
Richard E. Turner
UQCV
AI4CE
25
24
0
16 Mar 2022
What Matters For Meta-Learning Vision Regression Tasks?
What Matters For Meta-Learning Vision Regression Tasks?
Ni Gao
Hanna Ziesche
Ngo Anh Vien
Michael Volpp
Gerhard Neumann
VLM
18
29
0
09 Mar 2022
Contrastive Conditional Neural Processes
Contrastive Conditional Neural Processes
Zesheng Ye
Lina Yao
UQCV
23
12
0
08 Mar 2022
Continual Learning of Multi-modal Dynamics with External Memory
Continual Learning of Multi-modal Dynamics with External Memory
Abdullah Akgul
Gözde B. Ünal
M. Kandemir
CLL
19
0
0
02 Mar 2022
Reinforcement Learning in Presence of Discrete Markovian Context
  Evolution
Reinforcement Learning in Presence of Discrete Markovian Context Evolution
Hang Ren
Aivar Sootla
Taher Jafferjee
Junxiao Shen
Jun Wang
Haitham Bou-Ammar
BDL
OffRL
19
9
0
14 Feb 2022
Generalizing to New Physical Systems via Context-Informed Dynamics Model
Generalizing to New Physical Systems via Context-Informed Dynamics Model
Matthieu Kirchmeyer
Yuan Yin
Jérémie Donà
Nicolas Baskiotis
A. Rakotomamonjy
Patrick Gallinari
OOD
AI4CE
24
32
0
01 Feb 2022
Learning Intuitive Policies Using Action Features
Learning Intuitive Policies Using Action Features
Mingwei Ma
Jizhou Liu
Samuel Sokota
Max Kleiman-Weiner
Jakob N. Foerster
19
4
0
29 Jan 2022
Research on Patch Attentive Neural Process
Research on Patch Attentive Neural Process
Xiaohan Yu
Shao‐Chen Mao
17
1
0
29 Jan 2022
From data to functa: Your data point is a function and you can treat it
  like one
From data to functa: Your data point is a function and you can treat it like one
Emilien Dupont
Hyunjik Kim
S. M. Ali Eslami
Danilo Jimenez Rezende
Dan Rosenbaum
TDI
3DPC
178
139
0
28 Jan 2022
Transformers Can Do Bayesian Inference
Transformers Can Do Bayesian Inference
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Frank Hutter
BDL
UQCV
19
139
0
20 Dec 2021
Learn from Human Teams: a Probabilistic Solution to Real-Time
  Collaborative Robot Handling with Dynamic Gesture Commands
Learn from Human Teams: a Probabilistic Solution to Real-Time Collaborative Robot Handling with Dynamic Gesture Commands
Rui Chen
Alvin C M Shek
Changliu Liu
19
3
0
11 Dec 2021
Neural Attention Models in Deep Learning: Survey and Taxonomy
Neural Attention Models in Deep Learning: Survey and Taxonomy
Alana de Santana Correia
Esther Colombini
MLAU
11
17
0
11 Dec 2021
A Generative Car-following Model Conditioned On Driving Styles
A Generative Car-following Model Conditioned On Driving Styles
Yifan Zhang
Xinhong Chen
Jianping Wang
Zuduo Zheng
Kui Wu
21
37
0
10 Dec 2021
Multi-Task Neural Processes
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
16
8
0
10 Nov 2021
The Internet of Federated Things (IoFT): A Vision for the Future and
  In-depth Survey of Data-driven Approaches for Federated Learning
The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning
Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
E. Byon
...
C. Okwudire
Garvesh Raskutti
R. Saigal
Karandeep Singh
Ye Zhisheng
FedML
33
50
0
09 Nov 2021
Variational Multi-Task Learning with Gumbel-Softmax Priors
Variational Multi-Task Learning with Gumbel-Softmax Priors
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
16
27
0
09 Nov 2021
Multi-Task Neural Processes
Multi-Task Neural Processes
Donggyun Kim
Seongwoong Cho
Wonkwang Lee
Seunghoon Hong
22
0
0
28 Oct 2021
Contrastive Neural Processes for Self-Supervised Learning
Contrastive Neural Processes for Self-Supervised Learning
Konstantinos Kallidromitis
Denis A. Gudovskiy
Kozuka Kazuki
Ohama Iku
Luca Rigazio
SSL
AI4TS
38
10
0
24 Oct 2021
Previous
123456
Next