ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.05761
  4. Cited By
Attentive Neural Processes
v1v2 (latest)

Attentive Neural Processes

17 January 2019
Hyunjik Kim
A. Mnih
Jonathan Richard Schwarz
M. Garnelo
S. M. Ali Eslami
Dan Rosenbaum
Oriol Vinyals
Yee Whye Teh
ArXiv (abs)PDFHTML

Papers citing "Attentive Neural Processes"

50 / 292 papers shown
Title
A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning
A Hierarchical Bayesian Model for Deep Few-Shot Meta Learning
Minyoung Kim
Timothy M. Hospedales
BDL
152
0
0
16 Jun 2023
Taylorformer: Probabilistic Predictions for Time Series and other
  Processes
Taylorformer: Probabilistic Predictions for Time Series and other Processes
Omer Nivron
R. Parthipan
Damon J. Wischik
BDLAI4TS
180
2
0
30 May 2023
Adaptive Conditional Quantile Neural Processes
Adaptive Conditional Quantile Neural ProcessesConference on Uncertainty in Artificial Intelligence (UAI), 2023
Peiman Mohseni
N. Duffield
Bani Mallick
Arman Hasanzadeh
273
4
0
30 May 2023
Graph Neural Processes for Spatio-Temporal Extrapolation
Graph Neural Processes for Spatio-Temporal ExtrapolationKnowledge Discovery and Data Mining (KDD), 2023
Junfeng Hu
Yuxuan Liang
Zhencheng Fan
Hongyang Chen
Yu Zheng
Roger Zimmermann
BDL
274
26
0
30 May 2023
End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes
End-to-End Meta-Bayesian Optimisation with Transformer Neural ProcessesNeural Information Processing Systems (NeurIPS), 2023
A. Maraval
Matthieu Zimmer
Antoine Grosnit
H. Ammar
BDL
374
25
0
25 May 2023
Manifold Diffusion Fields
Manifold Diffusion FieldsInternational Conference on Learning Representations (ICLR), 2023
Ahmed A. A. Elhag
Yuyang Wang
J. Susskind
Miguel Angel Bautista
DiffMAI4CE
264
9
0
24 May 2023
Deep Stochastic Processes via Functional Markov Transition Operators
Deep Stochastic Processes via Functional Markov Transition OperatorsNeural Information Processing Systems (NeurIPS), 2023
Jin Xu
Emilien Dupont
Kaspar Martens
Tom Rainforth
Yee Whye Teh
201
5
0
24 May 2023
Memory Efficient Neural Processes via Constant Memory Attention Block
Memory Efficient Neural Processes via Constant Memory Attention BlockInternational Conference on Machine Learning (ICML), 2023
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Yoshua Bengio
Mohamed Osama Ahmed
294
8
0
23 May 2023
Disentangled Multi-Fidelity Deep Bayesian Active Learning
Disentangled Multi-Fidelity Deep Bayesian Active LearningInternational Conference on Machine Learning (ICML), 2023
D. Wu
Ruijia Niu
Matteo Chinazzi
Yi-An Ma
Rose Yu
AI4CE
250
9
0
07 May 2023
Martingale Posterior Neural Processes
Martingale Posterior Neural ProcessesInternational Conference on Learning Representations (ICLR), 2023
Hyungi Lee
Eunggu Yun
G. Nam
Edwin Fong
Juho Lee
UQCV
159
11
0
19 Apr 2023
Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
  Completion
Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph CompletionAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2023
Linhao Luo
Yuan-Fang Li
Gholamreza Haffari
Shirui Pan
BDL
180
39
0
17 Apr 2023
Robust and Context-Aware Real-Time Collaborative Robot Handling via
  Dynamic Gesture Commands
Robust and Context-Aware Real-Time Collaborative Robot Handling via Dynamic Gesture CommandsIEEE Robotics and Automation Letters (RA-L), 2023
Rui Chen
Alvin C M Shek
Changliu Liu
95
5
0
12 Apr 2023
Beyond Unimodal: Generalising Neural Processes for Multimodal
  Uncertainty Estimation
Beyond Unimodal: Generalising Neural Processes for Multimodal Uncertainty EstimationNeural Information Processing Systems (NeurIPS), 2023
M. Jung
He Zhao
Joanna Dipnall
Lan Du
UQCVBDL
238
11
0
04 Apr 2023
Autoregressive Conditional Neural Processes
Autoregressive Conditional Neural ProcessesInternational Conference on Learning Representations (ICLR), 2023
W. Bruinsma
Stratis Markou
James Requiema
Andrew Y. K. Foong
Tom R. Andersson
Anna Vaughan
Anthony Buonomo
J. S. Hosking
Richard Turner
BDLUQCV
202
31
0
25 Mar 2023
Adversarially Contrastive Estimation of Conditional Neural Processes
Adversarially Contrastive Estimation of Conditional Neural Processes
Zesheng Ye
Jing Du
Weitong Chen
UQCV
145
3
0
23 Mar 2023
Diffusion Probabilistic Fields
Diffusion Probabilistic FieldsInternational Conference on Learning Representations (ICLR), 2023
Peiye Zhuang
Samira Abnar
Jiatao Gu
Alex Schwing
Joshua M. Susskind
Miguel Angel Bautista
DiffM
214
31
0
01 Mar 2023
Learning Physical Models that Can Respect Conservation Laws
Learning Physical Models that Can Respect Conservation LawsInternational Conference on Machine Learning (ICML), 2023
Derek Hansen
Danielle C. Maddix
S. Alizadeh
Gaurav Gupta
Michael W. Mahoney
AI4CE
362
62
0
21 Feb 2023
Variational Autoencoding Neural Operators
Variational Autoencoding Neural OperatorsInternational Conference on Machine Learning (ICML), 2023
Jacob H. Seidman
Georgios Kissas
George J. Pappas
P. Perdikaris
DRLAI4CE
211
15
0
20 Feb 2023
Entity Aware Modelling: A Survey
Entity Aware Modelling: A Survey
Rahul Ghosh
Haoyu Yang
A. Khandelwal
Erhu He
Arvind Renganathan
Somya Sharma
X. Jia
Vipin Kumar
216
7
0
16 Feb 2023
Score-based Diffusion Models in Function Space
Score-based Diffusion Models in Function Space
Jae Hyun Lim
Nikola B. Kovachki
Ricardo Baptista
Christopher Beckham
Kamyar Azizzadenesheli
...
Karsten Kreis
Jan Kautz
Christopher Pal
Arash Vahdat
Anima Anandkumar
DiffM
649
69
0
14 Feb 2023
Transfer Learning for Bayesian Optimization: A Survey
Transfer Learning for Bayesian Optimization: A Survey
Tianyi Bai
Yan Zhao
Yu Shen
Xinyi Zhang
Wentao Zhang
Tengjiao Wang
BDL
207
46
0
12 Feb 2023
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
NP-Match: Towards a New Probabilistic Model for Semi-Supervised Learning
Jianfeng Wang
Xiaolin Hu
Thomas Lukasiewicz
AAMLBDL
191
0
0
31 Jan 2023
Meta Temporal Point Processes
Meta Temporal Point ProcessesInternational Conference on Learning Representations (ICLR), 2023
Wonho Bae
Mohamed Osama Ahmed
Frederick Tung
Gabriel L. Oliveira
AI4TS
110
22
0
27 Jan 2023
Time-Conditioned Generative Modeling of Object-Centric Representations
  for Video Decomposition and Prediction
Time-Conditioned Generative Modeling of Object-Centric Representations for Video Decomposition and PredictionConference on Uncertainty in Artificial Intelligence (UAI), 2023
Chen Gao
Bin Li
OCL
242
6
0
21 Jan 2023
Versatile Neural Processes for Learning Implicit Neural Representations
Versatile Neural Processes for Learning Implicit Neural RepresentationsInternational Conference on Learning Representations (ICLR), 2023
Zongyu Guo
Cuiling Lan
Zhizheng Zhang
Yan Lu
Zhibo Chen
258
13
0
21 Jan 2023
ExReg: Wide-range Photo Exposure Correction via a Multi-dimensional Regressor with Attention
ExReg: Wide-range Photo Exposure Correction via a Multi-dimensional Regressor with Attention
Tzu-Hao Chiang
Hao-Chien Hsueh
Ching-Chun Hsiao
Ching-Chun Huang
Wen-Hsiao Peng
Ching-Chun Huang
195
1
0
14 Dec 2022
Diffusion Generative Models in Infinite Dimensions
Diffusion Generative Models in Infinite DimensionsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Gavin Kerrigan
Justin Ley
Padhraic Smyth
DiffM
340
43
0
01 Dec 2022
Evidential Conditional Neural Processes
Evidential Conditional Neural ProcessesAAAI Conference on Artificial Intelligence (AAAI), 2022
Deepshikha Pandey
Qi Yu
BDLEDLUQCV
170
17
0
30 Nov 2022
Differentiable User Models
Differentiable User ModelsConference on Uncertainty in Artificial Intelligence (UAI), 2022
Alex Hamalainen
Mustafa Mert cCelikok
Samuel Kaski
238
3
0
29 Nov 2022
Graph Sequential Neural ODE Process for Link Prediction on Dynamic and
  Sparse Graphs
Graph Sequential Neural ODE Process for Link Prediction on Dynamic and Sparse GraphsWeb Search and Data Mining (WSDM), 2022
Linhao Luo
Reza Haffari
Shirui Pan
AI4TS
187
37
0
15 Nov 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to PracticeJournal of machine learning research (JMLR), 2022
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
333
11
0
14 Nov 2022
Modeling Temporal Data as Continuous Functions with Stochastic Process
  Diffusion
Modeling Temporal Data as Continuous Functions with Stochastic Process DiffusionInternational Conference on Machine Learning (ICML), 2022
Marin Bilos
Kashif Rasul
Anderson Schneider
Yuriy Nevmyvaka
Stephan Günnemann
DiffM
269
48
0
04 Nov 2022
Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior
Bayesian Convolutional Deep Sets with Task-Dependent Stationary PriorInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Yohan Jung
Jinkyoo Park
BDL
153
1
0
22 Oct 2022
Inference from Real-World Sparse Measurements
Inference from Real-World Sparse Measurements
Arnaud Pannatier
Kyle Matoba
François Fleuret
AI4TS
261
0
0
20 Oct 2022
A unified model for continuous conditional video prediction
A unified model for continuous conditional video prediction
Xi Ye
Guillaume-Alexandre Bilodeau
AI4TS
230
8
0
11 Oct 2022
Continuous PDE Dynamics Forecasting with Implicit Neural Representations
Continuous PDE Dynamics Forecasting with Implicit Neural RepresentationsInternational Conference on Learning Representations (ICLR), 2022
Yuan Yin
Matthieu Kirchmeyer
Jean-Yves Franceschi
A. Rakotomamonjy
Patrick Gallinari
AI4CE
218
68
0
29 Sep 2022
Spectral Diffusion Processes
Spectral Diffusion Processes
Angus Phillips
Thomas Seror
M. Hutchinson
Valentin De Bortoli
Arnaud Doucet
Emile Mathieu
DiffM
249
21
0
28 Sep 2022
NIERT: Accurate Numerical Interpolation through Unifying Scattered Data
  Representations using Transformer Encoder
NIERT: Accurate Numerical Interpolation through Unifying Scattered Data Representations using Transformer EncoderIEEE Transactions on Knowledge and Data Engineering (TKDE), 2022
Shi-qi Ding
Boyang Xia
Milong Ren
Dongbo Bu
140
3
0
19 Sep 2022
Compositional Law Parsing with Latent Random Functions
Compositional Law Parsing with Latent Random FunctionsInternational Conference on Learning Representations (ICLR), 2022
Fan Shi
Bin Li
Xiangyang Xue
CoGe
205
5
0
15 Sep 2022
The Neural Process Family: Survey, Applications and Perspectives
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard Turner
Weitong Chen
BDL
441
27
0
01 Sep 2022
IDNP: Interest Dynamics Modeling using Generative Neural Processes for
  Sequential Recommendation
IDNP: Interest Dynamics Modeling using Generative Neural Processes for Sequential RecommendationWeb Search and Data Mining (WSDM), 2022
Jing Du
Zesheng Ye
Lina Yao
Bin Guo
Zhiwen Yu
AI4TS
129
16
0
09 Aug 2022
What Can Transformers Learn In-Context? A Case Study of Simple Function
  Classes
What Can Transformers Learn In-Context? A Case Study of Simple Function ClassesNeural Information Processing Systems (NeurIPS), 2022
Shivam Garg
Dimitris Tsipras
Abigail Z. Jacobs
Gregory Valiant
605
665
0
01 Aug 2022
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via
  Sequence Modeling
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence ModelingInternational Conference on Machine Learning (ICML), 2022
Tung Nguyen
Aditya Grover
BDLUQCV
279
132
0
09 Jul 2022
Scheduling Planting Time Through Developing an Optimization Model and
  Analysis of Time Series Growing Degree Units
Scheduling Planting Time Through Developing an Optimization Model and Analysis of Time Series Growing Degree Units
Javad Ansarifar
Faezeh Akhavizadegan
Lizhi Wang
70
1
0
02 Jul 2022
CARD: Classification and Regression Diffusion Models
CARD: Classification and Regression Diffusion ModelsNeural Information Processing Systems (NeurIPS), 2022
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
293
142
0
15 Jun 2022
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
Yumeng Li
Ni Gao
Hanna Ziesche
Gerhard Neumann
237
5
0
14 Jun 2022
Multi-fidelity Hierarchical Neural Processes
Multi-fidelity Hierarchical Neural ProcessesKnowledge Discovery and Data Mining (KDD), 2022
D. Wu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
178
19
0
10 Jun 2022
Neural Diffusion Processes
Neural Diffusion ProcessesInternational Conference on Machine Learning (ICML), 2022
Vincent Dutordoir
Alan D. Saul
Zoubin Ghahramani
F. Simpson
DiffM
353
48
0
08 Jun 2022
A Meta Reinforcement Learning Approach for Predictive Autoscaling in the
  Cloud
A Meta Reinforcement Learning Approach for Predictive Autoscaling in the CloudKnowledge Discovery and Data Mining (KDD), 2022
Siqiao Xue
Chao Qu
Xiaoming Shi
Cong Liao
Shiyi Zhu
...
Yun Hu
Lei Lei
Yang Zheng
Jianguo Li
James Y. Zhang
215
55
0
31 May 2022
Few-Shot Diffusion Models
Few-Shot Diffusion Models
Giorgio Giannone
Didrik Nielsen
Ole Winther
DiffM
338
55
0
30 May 2022
Previous
123456
Next