ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09401
  4. Cited By
SGD: General Analysis and Improved Rates

SGD: General Analysis and Improved Rates

27 January 2019
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
ArXivPDFHTML

Papers citing "SGD: General Analysis and Improved Rates"

43 / 43 papers shown
Title
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Dmitry Kovalev
52
0
0
16 Mar 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
75
3
0
28 Jan 2025
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
45
4
0
06 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
48
0
0
03 Jun 2024
An Inexact Halpern Iteration with Application to Distributionally Robust
  Optimization
An Inexact Halpern Iteration with Application to Distributionally Robust Optimization
Ling Liang
Kim-Chuan Toh
Jia Jie Zhu
16
4
0
08 Feb 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
33
2
0
07 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured
  Variational Families
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
17
1
0
19 Jan 2024
Central Limit Theorem for Two-Timescale Stochastic Approximation with
  Markovian Noise: Theory and Applications
Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and Applications
Jie Hu
Vishwaraj Doshi
Do Young Eun
25
4
0
17 Jan 2024
On Adaptive Stochastic Optimization for Streaming Data: A Newton's
  Method with O(dN) Operations
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Antoine Godichon-Baggioni
Nicklas Werge
ODL
26
3
0
29 Nov 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
18
0
0
19 Oct 2023
When MiniBatch SGD Meets SplitFed Learning:Convergence Analysis and
  Performance Evaluation
When MiniBatch SGD Meets SplitFed Learning:Convergence Analysis and Performance Evaluation
Chao Huang
Geng Tian
Ming Tang
FedML
22
4
0
23 Aug 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
13
18
0
04 Jun 2023
Statistical Inference with Stochastic Gradient Methods under
  $φ$-mixing Data
Statistical Inference with Stochastic Gradient Methods under φφφ-mixing Data
Ruiqi Liu
X. Chen
Zuofeng Shang
FedML
12
6
0
24 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
14
5
0
30 Jan 2023
Convergence of First-Order Algorithms for Meta-Learning with Moreau
  Envelopes
Convergence of First-Order Algorithms for Meta-Learning with Moreau Envelopes
Konstantin Mishchenko
Slavomír Hanzely
Peter Richtárik
FedML
14
5
0
17 Jan 2023
Smooth Monotone Stochastic Variational Inequalities and Saddle Point
  Problems: A Survey
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
32
31
0
29 Aug 2022
Empirical Study of Overfitting in Deep FNN Prediction Models for Breast
  Cancer Metastasis
Empirical Study of Overfitting in Deep FNN Prediction Models for Breast Cancer Metastasis
Chuhan Xu
Pablo Coen-Pirani
Xia Jiang
AI4CE
13
1
0
03 Aug 2022
Towards Understanding Sharpness-Aware Minimization
Towards Understanding Sharpness-Aware Minimization
Maksym Andriushchenko
Nicolas Flammarion
AAML
19
131
0
13 Jun 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
19
74
0
27 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
10
10
0
08 May 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for
  Full-Batch GD
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
22
17
0
26 Apr 2022
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks
  with Partition-Parallelism and Random Boundary Node Sampling
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
Cheng Wan
Youjie Li
Ang Li
Namjae Kim
Yingyan Lin
GNN
27
75
0
21 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
  Methods
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
17
47
0
15 Feb 2022
Towards Federated Learning on Time-Evolving Heterogeneous Data
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
6
30
0
25 Dec 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm
  with Momentum
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
10
8
0
11 Nov 2021
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants
  via the Mirror Stochastic Polyak Stepsize
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
20
30
0
28 Oct 2021
Decentralized Composite Optimization with Compression
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
13
9
0
10 Aug 2021
Towards Biologically Plausible Convolutional Networks
Towards Biologically Plausible Convolutional Networks
Roman Pogodin
Yash Mehta
Timothy Lillicrap
P. Latham
11
22
0
22 Jun 2021
Stochastic Polyak Stepsize with a Moving Target
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
13
17
0
22 Jun 2021
Variance Reduced Training with Stratified Sampling for Forecasting
  Models
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
20
17
0
02 Mar 2021
AEGD: Adaptive Gradient Descent with Energy
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
20
11
0
10 Oct 2020
DBS: Dynamic Batch Size For Distributed Deep Neural Network Training
DBS: Dynamic Batch Size For Distributed Deep Neural Network Training
Qing Ye
Yuhao Zhou
Mingjia Shi
Yanan Sun
Jiancheng Lv
9
11
0
23 Jul 2020
On stochastic mirror descent with interacting particles: convergence
  properties and variance reduction
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
13
11
0
15 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
17
51
0
08 Jul 2020
Random Reshuffling: Simple Analysis with Vast Improvements
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
15
129
0
10 Jun 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
16
489
0
23 Mar 2020
Gradient tracking and variance reduction for decentralized optimization
  and machine learning
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
9
10
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a
  Surprising Application to Finite-Sum Problems
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
24
17
0
11 Feb 2020
Better Theory for SGD in the Nonconvex World
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
11
178
0
09 Feb 2020
Unified Optimal Analysis of the (Stochastic) Gradient Method
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
12
112
0
09 Jul 2019
Characterization of Convex Objective Functions and Optimal Expected
  Convergence Rates for SGD
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung Phan
14
6
0
09 Oct 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,190
0
16 Aug 2016
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
570
0
08 Dec 2012
1