Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09401
Cited By
SGD: General Analysis and Improved Rates
27 January 2019
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SGD: General Analysis and Improved Rates"
43 / 43 papers shown
Title
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Dmitry Kovalev
52
0
0
16 Mar 2025
Random Reshuffling for Stochastic Gradient Langevin Dynamics
Luke Shaw
Peter A. Whalley
75
3
0
28 Jan 2025
Stochastic Polyak Step-sizes and Momentum: Convergence Guarantees and Practical Performance
Dimitris Oikonomou
Nicolas Loizou
45
4
0
06 Jun 2024
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
48
0
0
03 Jun 2024
An Inexact Halpern Iteration with Application to Distributionally Robust Optimization
Ling Liang
Kim-Chuan Toh
Jia Jie Zhu
16
4
0
08 Feb 2024
AdaBatchGrad: Combining Adaptive Batch Size and Adaptive Step Size
P. Ostroukhov
Aigerim Zhumabayeva
Chulu Xiang
Alexander Gasnikov
Martin Takáč
Dmitry Kamzolov
ODL
33
2
0
07 Feb 2024
Provably Scalable Black-Box Variational Inference with Structured Variational Families
Joohwan Ko
Kyurae Kim
W. Kim
Jacob R. Gardner
BDL
17
1
0
19 Jan 2024
Central Limit Theorem for Two-Timescale Stochastic Approximation with Markovian Noise: Theory and Applications
Jie Hu
Vishwaraj Doshi
Do Young Eun
25
4
0
17 Jan 2024
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Antoine Godichon-Baggioni
Nicklas Werge
ODL
26
3
0
29 Nov 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
18
0
0
19 Oct 2023
When MiniBatch SGD Meets SplitFed Learning:Convergence Analysis and Performance Evaluation
Chao Huang
Geng Tian
Ming Tang
FedML
22
4
0
23 Aug 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
13
18
0
04 Jun 2023
Statistical Inference with Stochastic Gradient Methods under
φ
φ
φ
-mixing Data
Ruiqi Liu
X. Chen
Zuofeng Shang
FedML
12
6
0
24 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
14
5
0
30 Jan 2023
Convergence of First-Order Algorithms for Meta-Learning with Moreau Envelopes
Konstantin Mishchenko
Slavomír Hanzely
Peter Richtárik
FedML
14
5
0
17 Jan 2023
Smooth Monotone Stochastic Variational Inequalities and Saddle Point Problems: A Survey
Aleksandr Beznosikov
Boris Polyak
Eduard A. Gorbunov
D. Kovalev
Alexander Gasnikov
32
31
0
29 Aug 2022
Empirical Study of Overfitting in Deep FNN Prediction Models for Breast Cancer Metastasis
Chuhan Xu
Pablo Coen-Pirani
Xia Jiang
AI4CE
13
1
0
03 Aug 2022
Towards Understanding Sharpness-Aware Minimization
Maksym Andriushchenko
Nicolas Flammarion
AAML
19
131
0
13 Jun 2022
FedAvg with Fine Tuning: Local Updates Lead to Representation Learning
Liam Collins
Hamed Hassani
Aryan Mokhtari
Sanjay Shakkottai
FedML
19
74
0
27 May 2022
Federated Random Reshuffling with Compression and Variance Reduction
Grigory Malinovsky
Peter Richtárik
FedML
10
10
0
08 May 2022
Beyond Lipschitz: Sharp Generalization and Excess Risk Bounds for Full-Batch GD
Konstantinos E. Nikolakakis
Farzin Haddadpour
Amin Karbasi
Dionysios S. Kalogerias
22
17
0
26 Apr 2022
BNS-GCN: Efficient Full-Graph Training of Graph Convolutional Networks with Partition-Parallelism and Random Boundary Node Sampling
Cheng Wan
Youjie Li
Ang Li
Namjae Kim
Yingyan Lin
GNN
27
75
0
21 Mar 2022
Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods
Aleksandr Beznosikov
Eduard A. Gorbunov
Hugo Berard
Nicolas Loizou
17
47
0
15 Feb 2022
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
6
30
0
25 Dec 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
10
8
0
11 Nov 2021
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan DÓrazio
Nicolas Loizou
I. Laradji
Ioannis Mitliagkas
20
30
0
28 Oct 2021
Decentralized Composite Optimization with Compression
Yao Li
Xiaorui Liu
Jiliang Tang
Ming Yan
Kun Yuan
13
9
0
10 Aug 2021
Towards Biologically Plausible Convolutional Networks
Roman Pogodin
Yash Mehta
Timothy Lillicrap
P. Latham
11
22
0
22 Jun 2021
Stochastic Polyak Stepsize with a Moving Target
Robert Mansel Gower
Aaron Defazio
Michael G. Rabbat
13
17
0
22 Jun 2021
Variance Reduced Training with Stratified Sampling for Forecasting Models
Yucheng Lu
Youngsuk Park
Lifan Chen
Bernie Wang
Christopher De Sa
Dean Phillips Foster
AI4TS
20
17
0
02 Mar 2021
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
20
11
0
10 Oct 2020
DBS: Dynamic Batch Size For Distributed Deep Neural Network Training
Qing Ye
Yuhao Zhou
Mingjia Shi
Yanan Sun
Jiancheng Lv
9
11
0
23 Jul 2020
On stochastic mirror descent with interacting particles: convergence properties and variance reduction
Anastasia Borovykh
N. Kantas
P. Parpas
G. Pavliotis
13
11
0
15 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
17
51
0
08 Jul 2020
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
15
129
0
10 Jun 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
16
489
0
23 Mar 2020
Gradient tracking and variance reduction for decentralized optimization and machine learning
Ran Xin
S. Kar
U. Khan
9
10
0
13 Feb 2020
Variance Reduced Coordinate Descent with Acceleration: New Method With a Surprising Application to Finite-Sum Problems
Filip Hanzely
D. Kovalev
Peter Richtárik
24
17
0
11 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
11
178
0
09 Feb 2020
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
12
112
0
09 Jul 2019
Characterization of Convex Objective Functions and Optimal Expected Convergence Rates for SGD
Marten van Dijk
Lam M. Nguyen
Phuong Ha Nguyen
Dzung Phan
14
6
0
09 Oct 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
119
1,190
0
16 Aug 2016
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
570
0
08 Dec 2012
1