ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09453
  4. Cited By
On Learning Invariant Representation for Domain Adaptation

On Learning Invariant Representation for Domain Adaptation

27 January 2019
H. Zhao
Rémi Tachet des Combes
Kun Zhang
Geoffrey J. Gordon
    OOD
ArXivPDFHTML

Papers citing "On Learning Invariant Representation for Domain Adaptation"

36 / 36 papers shown
Title
Elastic Information Bottleneck
Elastic Information Bottleneck
Yuyan Ni
Yanyan Lan
Ao Liu
Zhiming Ma
22
2
0
07 Nov 2023
Continual Invariant Risk Minimization
Continual Invariant Risk Minimization
Francesco Alesiani
Shujian Yu
Mathias Niepert
OOD
31
1
0
21 Oct 2023
Novelty Detection in Reinforcement Learning with World Models
Novelty Detection in Reinforcement Learning with World Models
Geigh Zollicoffer
Kenneth Eaton
Jonathan C. Balloch
Julia Kim
Mark O. Riedl
Robert Wright
Mark O. Riedl
23
1
0
12 Oct 2023
Information Theory-Guided Heuristic Progressive Multi-View Coding
Information Theory-Guided Heuristic Progressive Multi-View Coding
Jiangmeng Li
Hang Gao
Wenwen Qiang
Changwen Zheng
22
2
0
21 Aug 2023
Practicality of generalization guarantees for unsupervised domain
  adaptation with neural networks
Practicality of generalization guarantees for unsupervised domain adaptation with neural networks
Adam Breitholtz
Fredrik D. Johansson
OOD
21
1
0
15 Mar 2023
Semantic Image Segmentation: Two Decades of Research
Semantic Image Segmentation: Two Decades of Research
G. Csurka
Riccardo Volpi
Boris Chidlovskii
3DV
29
50
0
13 Feb 2023
Subtype-Aware Dynamic Unsupervised Domain Adaptation
Subtype-Aware Dynamic Unsupervised Domain Adaptation
Xiaofeng Liu
Fangxu Xing
Jane You
Jun Lu
C.-C. Jay Kuo
G. El Fakhri
Jonghye Woo
OOD
39
6
0
16 Aug 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Jackson Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
33
7
0
29 Dec 2021
Assessing Fairness in the Presence of Missing Data
Assessing Fairness in the Presence of Missing Data
Yiliang Zhang
Q. Long
FaML
26
35
0
07 Dec 2021
Exploiting Domain-Specific Features to Enhance Domain Generalization
Exploiting Domain-Specific Features to Enhance Domain Generalization
Manh-Ha Bui
Toan M. Tran
Anh Tran
D.Q. Phung
OOD
31
125
0
18 Oct 2021
On the inductive biases of deep domain adaptation
On the inductive biases of deep domain adaptation
Rodrigue Siry
Louis Hémadou
Loïc Simon
F. Jurie
24
3
0
16 Sep 2021
f-Domain-Adversarial Learning: Theory and Algorithms
f-Domain-Adversarial Learning: Theory and Algorithms
David Acuna
Guojun Zhang
M. Law
Sanja Fidler
FedML
AI4CE
15
60
0
21 Jun 2021
Information-theoretic regularization for Multi-source Domain Adaptation
Information-theoretic regularization for Multi-source Domain Adaptation
Geon Yeong Park
Sang Wan Lee
TTA
21
25
0
04 Apr 2021
Limitations of Post-Hoc Feature Alignment for Robustness
Limitations of Post-Hoc Feature Alignment for Robustness
Collin Burns
Jacob Steinhardt
OOD
14
22
0
10 Mar 2021
How does the Combined Risk Affect the Performance of Unsupervised Domain
  Adaptation Approaches?
How does the Combined Risk Affect the Performance of Unsupervised Domain Adaptation Approaches?
Zhong Li
Zhen Fang
Feng Liu
Jie Lu
Bo Yuan
Guangquan Zhang
23
54
0
30 Dec 2020
Self-Supervised Real-to-Sim Scene Generation
Self-Supervised Real-to-Sim Scene Generation
Aayush Prakash
Shoubhik Debnath
Jean-Francois Lafleche
Eric Cameracci
Gavriel State
Stan Birchfield
M. Law
27
26
0
30 Nov 2020
Learning Causal Semantic Representation for Out-of-Distribution
  Prediction
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
29
104
0
03 Nov 2020
Empirical or Invariant Risk Minimization? A Sample Complexity
  Perspective
Empirical or Invariant Risk Minimization? A Sample Complexity Perspective
Kartik Ahuja
Jun Wang
Amit Dhurandhar
Karthikeyan Shanmugam
Kush R. Varshney
OOD
27
79
0
30 Oct 2020
Domain adaptation under structural causal models
Domain adaptation under structural causal models
Yuansi Chen
Peter Buhlmann
CML
OOD
AI4CE
31
38
0
29 Oct 2020
Model-based Policy Optimization with Unsupervised Model Adaptation
Model-based Policy Optimization with Unsupervised Model Adaptation
Jian Shen
Han Zhao
Weinan Zhang
Yong Yu
30
27
0
19 Oct 2020
On Learning Language-Invariant Representations for Universal Machine
  Translation
On Learning Language-Invariant Representations for Universal Machine Translation
Hao Zhao
Junjie Hu
Andrej Risteski
29
8
0
11 Aug 2020
Adversarial Bipartite Graph Learning for Video Domain Adaptation
Adversarial Bipartite Graph Learning for Video Domain Adaptation
Yadan Luo
Zi Huang
Zijian Wang
Zheng-Wei Zhang
Mahsa Baktashmotlagh
22
51
0
31 Jul 2020
Beyond $\mathcal{H}$-Divergence: Domain Adaptation Theory With
  Jensen-Shannon Divergence
Beyond H\mathcal{H}H-Divergence: Domain Adaptation Theory With Jensen-Shannon Divergence
Changjian Shui
Qi Chen
Jun Wen
Fan Zhou
Christian Gagné
Boyu Wang
35
22
0
30 Jul 2020
Continuously Indexed Domain Adaptation
Continuously Indexed Domain Adaptation
Hao Wang
Hao He
Dina Katabi
MedIm
4
115
0
03 Jul 2020
Rethinking Distributional Matching Based Domain Adaptation
Rethinking Distributional Matching Based Domain Adaptation
Bo-wen Li
Yezhen Wang
Tong Che
Shanghang Zhang
Sicheng Zhao
Pengfei Xu
Wei Zhou
Yoshua Bengio
Kurt Keutzer
OOD
14
59
0
23 Jun 2020
Unsupervised Domain Adaptation via Structurally Regularized Deep
  Clustering
Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering
Hui Tang
Ke Chen
K. Jia
CML
OOD
11
269
0
19 Mar 2020
Domain Adaptation with Conditional Distribution Matching and Generalized
  Label Shift
Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift
Rémi Tachet des Combes
Han Zhao
Yu-Xiang Wang
Geoffrey J. Gordon
OOD
AAML
VLM
28
183
0
10 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Understanding Self-Training for Gradual Domain Adaptation
Understanding Self-Training for Gradual Domain Adaptation
Ananya Kumar
Tengyu Ma
Percy Liang
CLL
TTA
28
226
0
26 Feb 2020
Invariant Risk Minimization Games
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
14
242
0
11 Feb 2020
Improving Unsupervised Domain Adaptation with Variational Information
  Bottleneck
Improving Unsupervised Domain Adaptation with Variational Information Bottleneck
Yuxuan Song
Lantao Yu
Zhangjie Cao
Zhiming Zhou
Jian Shen
Shuo Shao
Weinan Zhang
Yong Yu
28
17
0
21 Nov 2019
Unsupervised Domain Adaptation for Object Detection via Cross-Domain
  Semi-Supervised Learning
Unsupervised Domain Adaptation for Object Detection via Cross-Domain Semi-Supervised Learning
Fuxun Yu
Di Wang
Yinpeng Chen
Nikolaos Karianakis
Tong Shen
Pei Yu
Dimitrios Lymberopoulos
Sidi Lu
Weisong Shi
Xiang Chen
22
33
0
17 Nov 2019
SCL: Towards Accurate Domain Adaptive Object Detection via Gradient
  Detach Based Stacked Complementary Losses
SCL: Towards Accurate Domain Adaptive Object Detection via Gradient Detach Based Stacked Complementary Losses
Zhiqiang Shen
Harsh Maheshwari
Weichen Yao
Marios Savvides
ObjD
21
93
0
06 Nov 2019
The Role of Embedding Complexity in Domain-invariant Representations
The Role of Embedding Complexity in Domain-invariant Representations
Ching-Yao Chuang
Antonio Torralba
Stefanie Jegelka
16
1
0
13 Oct 2019
Mix and Match: An Optimistic Tree-Search Approach for Learning Models
  from Mixture Distributions
Mix and Match: An Optimistic Tree-Search Approach for Learning Models from Mixture Distributions
Matthew Faw
Rajat Sen
Karthikeyan Shanmugam
C. Caramanis
Sanjay Shakkottai
28
3
0
23 Jul 2019
Domain Adaptation: Learning Bounds and Algorithms
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
789
0
19 Feb 2009
1