Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.06720
Cited By
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
18 February 2019
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent"
50 / 288 papers shown
Title
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
Data-Efficient Augmentation for Training Neural Networks
Tian Yu Liu
Baharan Mirzasoleiman
32
7
0
15 Oct 2022
Understanding Impacts of Task Similarity on Backdoor Attack and Detection
Di Tang
Rui Zhu
Xiaofeng Wang
Haixu Tang
Yi Chen
AAML
24
5
0
12 Oct 2022
What Can the Neural Tangent Kernel Tell Us About Adversarial Robustness?
Nikolaos Tsilivis
Julia Kempe
AAML
47
18
0
11 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
58
16
0
10 Oct 2022
Second-order regression models exhibit progressive sharpening to the edge of stability
Atish Agarwala
Fabian Pedregosa
Jeffrey Pennington
35
26
0
10 Oct 2022
Continual task learning in natural and artificial agents
Timo Flesch
Andrew M. Saxe
Christopher Summerfield
CLL
43
24
0
10 Oct 2022
Critical Learning Periods for Multisensory Integration in Deep Networks
Michael Kleinman
Alessandro Achille
Stefano Soatto
35
10
0
06 Oct 2022
FedMT: Federated Learning with Mixed-type Labels
Qiong Zhang
Jing Peng
Xin Zhang
A. Talhouk
Gang Niu
Xiaoxiao Li
FedML
59
0
0
05 Oct 2022
Scale-invariant Bayesian Neural Networks with Connectivity Tangent Kernel
Sungyub Kim
Si-hun Park
Kyungsu Kim
Eunho Yang
BDL
32
4
0
30 Sep 2022
Formal Conceptual Views in Neural Networks
Johannes Hirth
Tom Hanika
20
2
0
27 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
49
22
0
22 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
56
6
0
17 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
255
318
0
11 Sep 2022
Generalisation under gradient descent via deterministic PAC-Bayes
Eugenio Clerico
Tyler Farghly
George Deligiannidis
Benjamin Guedj
Arnaud Doucet
31
4
0
06 Sep 2022
On Kernel Regression with Data-Dependent Kernels
James B. Simon
BDL
29
3
0
04 Sep 2022
Analyzing Sharpness along GD Trajectory: Progressive Sharpening and Edge of Stability
Z. Li
Zixuan Wang
Jian Li
19
44
0
26 Jul 2022
Can we achieve robustness from data alone?
Nikolaos Tsilivis
Jingtong Su
Julia Kempe
OOD
DD
36
18
0
24 Jul 2022
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
Andrew M. Saxe
Shagun Sodhani
Sam Lewallen
AI4CE
32
34
0
21 Jul 2022
Single Model Uncertainty Estimation via Stochastic Data Centering
Jayaraman J. Thiagarajan
Rushil Anirudh
V. Narayanaswamy
P. Bremer
UQCV
OOD
32
26
0
14 Jul 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
32
3
0
02 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
25
114
0
30 Jun 2022
Momentum Diminishes the Effect of Spectral Bias in Physics-Informed Neural Networks
G. Farhani
Alexander Kazachek
Boyu Wang
27
6
0
29 Jun 2022
Making Look-Ahead Active Learning Strategies Feasible with Neural Tangent Kernels
Mohamad Amin Mohamadi
Wonho Bae
Danica J. Sutherland
30
20
0
25 Jun 2022
Fast Finite Width Neural Tangent Kernel
Roman Novak
Jascha Narain Sohl-Dickstein
S. Schoenholz
AAML
28
54
0
17 Jun 2022
Large-width asymptotics for ReLU neural networks with
α
α
α
-Stable initializations
Stefano Favaro
S. Fortini
Stefano Peluchetti
20
2
0
16 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Wavelet Regularization Benefits Adversarial Training
Jun Yan
Huilin Yin
Xiaoyang Deng
Zi-qin Zhao
Wancheng Ge
Hao Zhang
Gerhard Rigoll
AAML
19
2
0
08 Jun 2022
Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials
Eshaan Nichani
Yunzhi Bai
Jason D. Lee
29
10
0
08 Jun 2022
Ensembles for Uncertainty Estimation: Benefits of Prior Functions and Bootstrapping
Vikranth Dwaracherla
Zheng Wen
Ian Osband
Xiuyuan Lu
S. Asghari
Benjamin Van Roy
UQCV
29
17
0
08 Jun 2022
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
53
151
0
01 Jun 2022
Analyzing Tree Architectures in Ensembles via Neural Tangent Kernel
Ryuichi Kanoh
M. Sugiyama
31
2
0
25 May 2022
On the Interpretability of Regularisation for Neural Networks Through Model Gradient Similarity
Vincent Szolnoky
Viktor Andersson
Balázs Kulcsár
Rebecka Jörnsten
45
5
0
25 May 2022
Transition to Linearity of General Neural Networks with Directed Acyclic Graph Architecture
Libin Zhu
Chaoyue Liu
M. Belkin
GNN
AI4CE
23
4
0
24 May 2022
Gaussian Pre-Activations in Neural Networks: Myth or Reality?
Pierre Wolinski
Julyan Arbel
AI4CE
76
8
0
24 May 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
40
77
0
19 May 2022
Trading Positional Complexity vs. Deepness in Coordinate Networks
Jianqiao Zheng
Sameera Ramasinghe
Xueqian Li
Simon Lucey
31
18
0
18 May 2022
Incorporating Prior Knowledge into Neural Networks through an Implicit Composite Kernel
Ziyang Jiang
Tongshu Zheng
Yiling Liu
David Carlson
30
4
0
15 May 2022
Understanding the unstable convergence of gradient descent
Kwangjun Ahn
J.N. Zhang
S. Sra
36
57
0
03 Apr 2022
Analytic theory for the dynamics of wide quantum neural networks
Junyu Liu
K. Najafi
Kunal Sharma
F. Tacchino
Liang Jiang
Antonio Mezzacapo
31
52
0
30 Mar 2022
Global Convergence of MAML and Theory-Inspired Neural Architecture Search for Few-Shot Learning
Haoxiang Wang
Yite Wang
Ruoyu Sun
Bo-wen Li
33
27
0
17 Mar 2022
Generalization Through The Lens Of Leave-One-Out Error
Gregor Bachmann
Thomas Hofmann
Aurelien Lucchi
67
7
0
07 Mar 2022
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
Javier Antorán
Riccardo Barbano
Johannes Leuschner
José Miguel Hernández-Lobato
Bangti Jin
UQCV
35
10
0
28 Feb 2022
The Spectral Bias of Polynomial Neural Networks
Moulik Choraria
L. Dadi
Grigorios G. Chrysos
Julien Mairal
V. Cevher
24
18
0
27 Feb 2022
Finding Dynamics Preserving Adversarial Winning Tickets
Xupeng Shi
Pengfei Zheng
Adam Ding
Yuan Gao
Weizhong Zhang
AAML
23
1
0
14 Feb 2022
Demystify Optimization and Generalization of Over-parameterized PAC-Bayesian Learning
Wei Huang
Chunrui Liu
Yilan Chen
Tianyu Liu
R. Xu
BDL
MLT
19
2
0
04 Feb 2022
Tight Convergence Rate Bounds for Optimization Under Power Law Spectral Conditions
Maksim Velikanov
Dmitry Yarotsky
11
6
0
02 Feb 2022
Deep Layer-wise Networks Have Closed-Form Weights
Chieh-Tsai Wu
A. Masoomi
Arthur Gretton
Jennifer Dy
29
3
0
01 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
34
3
0
30 Jan 2022
Interplay between depth of neural networks and locality of target functions
Takashi Mori
Masakuni Ueda
25
0
0
28 Jan 2022
Previous
1
2
3
4
5
6
Next