Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.06720
Cited By
Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent
18 February 2019
Jaehoon Lee
Lechao Xiao
S. Schoenholz
Yasaman Bahri
Roman Novak
Jascha Narain Sohl-Dickstein
Jeffrey Pennington
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent"
38 / 288 papers shown
Title
Any Target Function Exists in a Neighborhood of Any Sufficiently Wide Random Network: A Geometrical Perspective
S. Amari
27
12
0
20 Jan 2020
Mean field theory for deep dropout networks: digging up gradient backpropagation deeply
Wei Huang
R. Xu
Weitao Du
Yutian Zeng
Yunce Zhao
25
6
0
19 Dec 2019
Neural Tangents: Fast and Easy Infinite Neural Networks in Python
Roman Novak
Lechao Xiao
Jiri Hron
Jaehoon Lee
Alexander A. Alemi
Jascha Narain Sohl-Dickstein
S. Schoenholz
38
225
0
05 Dec 2019
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
215
0
03 Dec 2019
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
27
21
0
20 Nov 2019
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
35
14
0
19 Oct 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
27
9
0
12 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
19
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Non-Gaussian processes and neural networks at finite widths
Sho Yaida
36
87
0
30 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
29
113
0
25 Sep 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
27
149
0
13 Sep 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
30
108
0
25 Jun 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
324
0
13 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Ryo Karakida
S. Akaho
S. Amari
27
40
0
07 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
42
122
0
05 Jun 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
28
383
0
30 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
42
89
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
14
31
0
27 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
Explicitizing an Implicit Bias of the Frequency Principle in Two-layer Neural Networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
MLT
AI4CE
36
38
0
24 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
50
0
19 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
25
109
0
09 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
44
905
0
26 Apr 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
R. Tibshirani
31
728
0
19 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
20
22
0
21 Feb 2019
Dynamical Isometry and a Mean Field Theory of LSTMs and GRUs
D. Gilboa
B. Chang
Minmin Chen
Greg Yang
S. Schoenholz
Ed H. Chi
Jeffrey Pennington
34
40
0
25 Jan 2019
Scaling description of generalization with number of parameters in deep learning
Mario Geiger
Arthur Jacot
S. Spigler
Franck Gabriel
Levent Sagun
Stéphane dÁscoli
Giulio Biroli
Clément Hongler
M. Wyart
52
195
0
06 Jan 2019
Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers
Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
MLT
32
765
0
12 Nov 2018
Information Geometry of Orthogonal Initializations and Training
Piotr A. Sokól
Il-Su Park
AI4CE
80
16
0
09 Oct 2018
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
349
0
14 Jun 2018
High-dimensional dynamics of generalization error in neural networks
Madhu S. Advani
Andrew M. Saxe
AI4CE
90
464
0
10 Oct 2017
A Differential Equation for Modeling Nesterov's Accelerated Gradient Method: Theory and Insights
Weijie Su
Stephen P. Boyd
Emmanuel J. Candes
108
1,157
0
04 Mar 2015
Previous
1
2
3
4
5
6