ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.10811
  4. Cited By
Do ImageNet Classifiers Generalize to ImageNet?

Do ImageNet Classifiers Generalize to ImageNet?

13 February 2019
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
    OOD
    SSeg
    VLM
ArXivPDFHTML

Papers citing "Do ImageNet Classifiers Generalize to ImageNet?"

50 / 300 papers shown
Title
Contrasting Contrastive Self-Supervised Representation Learning
  Pipelines
Contrasting Contrastive Self-Supervised Representation Learning Pipelines
Klemen Kotar
Gabriel Ilharco
Ludwig Schmidt
Kiana Ehsani
Roozbeh Mottaghi
SSL
23
45
0
25 Mar 2021
Scaling Local Self-Attention for Parameter Efficient Visual Backbones
Scaling Local Self-Attention for Parameter Efficient Visual Backbones
Ashish Vaswani
Prajit Ramachandran
A. Srinivas
Niki Parmar
Blake A. Hechtman
Jonathon Shlens
16
395
0
23 Mar 2021
Characterizing and Improving the Robustness of Self-Supervised Learning
  through Background Augmentations
Characterizing and Improving the Robustness of Self-Supervised Learning through Background Augmentations
Chaitanya K. Ryali
D. Schwab
Ari S. Morcos
SSL
24
9
0
23 Mar 2021
Is it enough to optimize CNN architectures on ImageNet?
Is it enough to optimize CNN architectures on ImageNet?
Lukas Tuggener
Jürgen Schmidhuber
Thilo Stadelmann
22
23
0
16 Mar 2021
Limitations of Post-Hoc Feature Alignment for Robustness
Limitations of Post-Hoc Feature Alignment for Robustness
Collin Burns
Jacob Steinhardt
OOD
6
22
0
10 Mar 2021
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test
  Accuracy
Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy
Lucas Liebenwein
Cenk Baykal
Brandon Carter
David K Gifford
Daniela Rus
AAML
27
71
0
04 Mar 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
32
980
0
03 Mar 2021
Pseudo-labeling for Scalable 3D Object Detection
Pseudo-labeling for Scalable 3D Object Detection
Benjamin Caine
Rebecca Roelofs
Vijay Vasudevan
Jiquan Ngiam
Yuning Chai
Z. Chen
Jonathon Shlens
21
41
0
02 Mar 2021
Learning Transferable Visual Models From Natural Language Supervision
Learning Transferable Visual Models From Natural Language Supervision
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya A. Ramesh
Gabriel Goh
...
Amanda Askell
Pamela Mishkin
Jack Clark
Gretchen Krueger
Ilya Sutskever
CLIP
VLM
98
27,569
0
26 Feb 2021
On Interaction Between Augmentations and Corruptions in Natural
  Corruption Robustness
On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness
Eric Mintun
A. Kirillov
Saining Xie
20
88
0
22 Feb 2021
Data-Driven Protection Levels for Camera and 3D Map-based Safe Urban
  Localization
Data-Driven Protection Levels for Camera and 3D Map-based Safe Urban Localization
Shubh Gupta
G. Gao
13
5
0
16 Jan 2021
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey
  of Emerging Trends
Run-Time Monitoring of Machine Learning for Robotic Perception: A Survey of Emerging Trends
Q. Rahman
Peter Corke
Feras Dayoub
OOD
27
51
0
05 Jan 2021
Why do classifier accuracies show linear trends under distribution
  shift?
Why do classifier accuracies show linear trends under distribution shift?
Horia Mania
S. Sra
OOD
21
19
0
31 Dec 2020
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained
  Classification Problems
No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained Classification Problems
N. Sohoni
Jared A. Dunnmon
Geoffrey Angus
Albert Gu
Christopher Ré
11
240
0
25 Nov 2020
LOss-Based SensiTivity rEgulaRization: towards deep sparse neural
  networks
LOss-Based SensiTivity rEgulaRization: towards deep sparse neural networks
Enzo Tartaglione
Andrea Bragagnolo
A. Fiandrotti
Marco Grangetto
ODL
UQCV
11
34
0
16 Nov 2020
Image Representations Learned With Unsupervised Pre-Training Contain
  Human-like Biases
Image Representations Learned With Unsupervised Pre-Training Contain Human-like Biases
Ryan Steed
Aylin Caliskan
SSL
17
156
0
28 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep
  Learning through Adversarial Robustness
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
19
48
0
19 Oct 2020
Robust Validation: Confident Predictions Even When Distributions Shift
Robust Validation: Confident Predictions Even When Distributions Shift
Maxime Cauchois
Suyash Gupta
Alnur Ali
John C. Duchi
OOD
9
89
0
10 Aug 2020
Anatomy of Catastrophic Forgetting: Hidden Representations and Task
  Semantics
Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics
V. Ramasesh
Ethan Dyer
M. Raghu
CLL
22
173
0
14 Jul 2020
Monitoring and explainability of models in production
Monitoring and explainability of models in production
Janis Klaise
A. V. Looveren
Clive Cox
G. Vacanti
Alexandru Coca
35
48
0
13 Jul 2020
Contrastive Training for Improved Out-of-Distribution Detection
Contrastive Training for Improved Out-of-Distribution Detection
Jim Winkens
Rudy Bunel
Abhijit Guha Roy
Robert Stanforth
Vivek Natarajan
...
Alan Karthikesalingam
Simon A. A. Kohl
taylan. cemgil
S. M. Ali Eslami
Olaf Ronneberger
OODD
11
234
0
10 Jul 2020
Self-Supervised Policy Adaptation during Deployment
Self-Supervised Policy Adaptation during Deployment
Nicklas Hansen
Rishabh Jangir
Yu Sun
Guillem Alenyà
Pieter Abbeel
Alexei A. Efros
Lerrel Pinto
Xiaolong Wang
23
159
0
08 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
22
530
0
01 Jul 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
26
457
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
39
1,663
0
29 Jun 2020
Active Online Learning with Hidden Shifting Domains
Active Online Learning with Hidden Shifting Domains
Yining Chen
Haipeng Luo
Tengyu Ma
Chicheng Zhang
13
5
0
25 Jun 2020
Evaluating Prediction-Time Batch Normalization for Robustness under
  Covariate Shift
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift
Zachary Nado
Shreyas Padhy
D. Sculley
Alexander DÁmour
Balaji Lakshminarayanan
Jasper Snoek
OOD
AI4TS
30
238
0
19 Jun 2020
Tent: Fully Test-time Adaptation by Entropy Minimization
Tent: Fully Test-time Adaptation by Entropy Minimization
Dequan Wang
Evan Shelhamer
Shaoteng Liu
Bruno A. Olshausen
Trevor Darrell
OOD
32
53
0
18 Jun 2020
70 years of machine learning in geoscience in review
70 years of machine learning in geoscience in review
Jesper Sören Dramsch
VLM
AI4CE
24
160
0
16 Jun 2020
Evaluating Models' Local Decision Boundaries via Contrast Sets
Evaluating Models' Local Decision Boundaries via Contrast Sets
Matt Gardner
Yoav Artzi
Victoria Basmova
Jonathan Berant
Ben Bogin
...
Sanjay Subramanian
Reut Tsarfaty
Eric Wallace
Ally Zhang
Ben Zhou
ELM
35
84
0
06 Apr 2020
MUXConv: Information Multiplexing in Convolutional Neural Networks
MUXConv: Information Multiplexing in Convolutional Neural Networks
Zhichao Lu
Kalyanmoy Deb
Vishnu Naresh Boddeti
11
44
0
31 Mar 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
30
120
0
26 Mar 2020
On Calibration of Mixup Training for Deep Neural Networks
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
12
6
0
22 Mar 2020
AL2: Progressive Activation Loss for Learning General Representations in
  Classification Neural Networks
AL2: Progressive Activation Loss for Learning General Representations in Classification Neural Networks
Majed El Helou
Frederike Dumbgen
Sabine Süsstrunk
CLL
AI4CE
22
2
0
07 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
900
0
02 Mar 2020
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu
Wenkai Xu
Jie Lu
Guangquan Zhang
A. Gretton
Danica J. Sutherland
11
176
0
21 Feb 2020
Deep regularization and direct training of the inner layers of Neural
  Networks with Kernel Flows
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
9
21
0
19 Feb 2020
Angular Visual Hardness
Angular Visual Hardness
Beidi Chen
Weiyang Liu
Zhiding Yu
Jan Kautz
Anshumali Shrivastava
Animesh Garg
Anima Anandkumar
AAML
35
51
0
04 Dec 2019
Enhanced Convolutional Neural Tangent Kernels
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
16
131
0
03 Nov 2019
NEURO-DRAM: a 3D recurrent visual attention model for interpretable
  neuroimaging classification
NEURO-DRAM: a 3D recurrent visual attention model for interpretable neuroimaging classification
D. Wood
James H. Cole
Thomas C Booth
MedIm
15
12
0
10 Oct 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
8
3,412
0
30 Sep 2019
Density estimation in representation space to predict model uncertainty
Density estimation in representation space to predict model uncertainty
Tiago Ramalho
M. Corbalan
UQCV
BDL
6
37
0
20 Aug 2019
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
21
1,416
0
16 Jul 2019
Improving performance of deep learning models with axiomatic attribution
  priors and expected gradients
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
13
80
0
25 Jun 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
  Augmentation
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
8
204
0
06 Jun 2019
Model Similarity Mitigates Test Set Overuse
Model Similarity Mitigates Test Set Overuse
Horia Mania
John Miller
Ludwig Schmidt
Moritz Hardt
Benjamin Recht
12
50
0
29 May 2019
The advantages of multiple classes for reducing overfitting from test
  set reuse
The advantages of multiple classes for reducing overfitting from test set reuse
Vitaly Feldman
Roy Frostig
Moritz Hardt
20
29
0
24 May 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
24
8
0
23 May 2019
Addressing Model Vulnerability to Distributional Shifts over Image
  Transformation Sets
Addressing Model Vulnerability to Distributional Shifts over Image Transformation Sets
Riccardo Volpi
Vittorio Murino
23
29
0
28 Mar 2019
Detecting Overfitting via Adversarial Examples
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
13
45
0
06 Mar 2019
Previous
123456