Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.07571
Cited By
Two models of double descent for weak features
18 March 2019
M. Belkin
Daniel J. Hsu
Ji Xu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Two models of double descent for weak features"
50 / 262 papers shown
Title
Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures
Yuan Cao
Quanquan Gu
M. Belkin
11
51
0
28 Apr 2021
Lower Bounds on the Generalization Error of Nonlinear Learning Models
Inbar Seroussi
Ofer Zeitouni
13
5
0
26 Mar 2021
The Geometry of Over-parameterized Regression and Adversarial Perturbations
J. Rocks
Pankaj Mehta
AAML
11
8
0
25 Mar 2021
Benign Overfitting of Constant-Stepsize SGD for Linear Regression
Difan Zou
Jingfeng Wu
Vladimir Braverman
Quanquan Gu
Sham Kakade
19
62
0
23 Mar 2021
Comments on Leo Breiman's paper 'Statistical Modeling: The Two Cultures' (Statistical Science, 2001, 16(3), 199-231)
Jelena Bradic
Yinchu Zhu
17
0
0
21 Mar 2021
The Common Intuition to Transfer Learning Can Win or Lose: Case Studies for Linear Regression
Yehuda Dar
Daniel LeJeune
Richard G. Baraniuk
MLT
32
5
0
09 Mar 2021
On the Generalization Power of Overfitted Two-Layer Neural Tangent Kernel Models
Peizhong Ju
Xiaojun Lin
Ness B. Shroff
MLT
24
10
0
09 Mar 2021
Asymptotics of Ridge Regression in Convolutional Models
Mojtaba Sahraee-Ardakan
Tung Mai
Anup B. Rao
Ryan Rossi
S. Rangan
A. Fletcher
MLT
16
2
0
08 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
27
93
0
02 Mar 2021
Asymptotic Risk of Overparameterized Likelihood Models: Double Descent Theory for Deep Neural Networks
Ryumei Nakada
Masaaki Imaizumi
21
2
0
28 Feb 2021
Learning curves of generic features maps for realistic datasets with a teacher-student model
Bruno Loureiro
Cédric Gerbelot
Hugo Cui
Sebastian Goldt
Florent Krzakala
M. Mézard
Lenka Zdeborová
30
135
0
16 Feb 2021
Double-descent curves in neural networks: a new perspective using Gaussian processes
Ouns El Harzli
Bernardo Cuenca Grau
Guillermo Valle Pérez
A. Louis
15
6
0
14 Feb 2021
Linear Regression with Distributed Learning: A Generalization Error Perspective
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
FedML
6
10
0
22 Jan 2021
Adversarially Robust Estimate and Risk Analysis in Linear Regression
Yue Xing
Ruizhi Zhang
Guang Cheng
AAML
20
27
0
18 Dec 2020
Provable Benefits of Overparameterization in Model Compression: From Double Descent to Pruning Neural Networks
Xiangyu Chang
Yingcong Li
Samet Oymak
Christos Thrampoulidis
32
50
0
16 Dec 2020
Avoiding The Double Descent Phenomenon of Random Feature Models Using Hybrid Regularization
Kelvin K. Kan
J. Nagy
Lars Ruthotto
AI4CE
37
6
0
11 Dec 2020
Analyzing Finite Neural Networks: Can We Trust Neural Tangent Kernel Theory?
Mariia Seleznova
Gitta Kutyniok
AAML
16
29
0
08 Dec 2020
Removing Spurious Features can Hurt Accuracy and Affect Groups Disproportionately
Fereshte Khani
Percy Liang
FaML
13
65
0
07 Dec 2020
Risk-Monotonicity in Statistical Learning
Zakaria Mhammedi
30
7
0
28 Nov 2020
Dimensionality reduction, regularization, and generalization in overparameterized regressions
Ningyuan Huang
D. Hogg
Soledad Villar
21
14
0
23 Nov 2020
Binary Classification of Gaussian Mixtures: Abundance of Support Vectors, Benign Overfitting and Regularization
Ke Wang
Christos Thrampoulidis
28
27
0
18 Nov 2020
Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate
Jingfeng Wu
Difan Zou
Vladimir Braverman
Quanquan Gu
8
18
0
04 Nov 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
37
93
0
04 Nov 2020
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
13
41
0
26 Oct 2020
Asymptotic Behavior of Adversarial Training in Binary Classification
Hossein Taheri
Ramtin Pedarsani
Christos Thrampoulidis
AAML
21
16
0
26 Oct 2020
Increasing Depth Leads to U-Shaped Test Risk in Over-parameterized Convolutional Networks
Eshaan Nichani
Adityanarayanan Radhakrishnan
Caroline Uhler
21
9
0
19 Oct 2020
A Multi-resolution Theory for Approximating Infinite-
p
p
p
-Zero-
n
n
n
: Transitional Inference, Individualized Predictions, and a World Without Bias-Variance Trade-off
Xinran Li
X. Meng
10
13
0
17 Oct 2020
What causes the test error? Going beyond bias-variance via ANOVA
Licong Lin
Edgar Dobriban
19
34
0
11 Oct 2020
Temporal Difference Uncertainties as a Signal for Exploration
Sebastian Flennerhag
Jane X. Wang
Pablo Sprechmann
Francesco Visin
Alexandre Galashov
Steven Kapturowski
Diana Borsa
N. Heess
André Barreto
Razvan Pascanu
OffRL
8
14
0
05 Oct 2020
On the Universality of the Double Descent Peak in Ridgeless Regression
David Holzmüller
8
12
0
05 Oct 2020
Benign overfitting in ridge regression
Alexander Tsigler
Peter L. Bartlett
28
159
0
29 Sep 2020
Experimental Design for Overparameterized Learning with Application to Single Shot Deep Active Learning
N. Shoham
H. Avron
BDL
9
12
0
27 Sep 2020
On the proliferation of support vectors in high dimensions
Daniel J. Hsu
Vidya Muthukumar
Ji Xu
24
42
0
22 Sep 2020
Minimum discrepancy principle strategy for choosing
k
k
k
in
k
k
k
-NN regression
Yaroslav Averyanov
Alain Celisse
11
0
0
20 Aug 2020
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam
Jeffrey Pennington
15
124
0
15 Aug 2020
On the Generalization Properties of Adversarial Training
Yue Xing
Qifan Song
Guang Cheng
AAML
25
32
0
15 Aug 2020
Provable More Data Hurt in High Dimensional Least Squares Estimator
Zeng Li
Chuanlong Xie
Qinwen Wang
15
6
0
14 Aug 2020
The Slow Deterioration of the Generalization Error of the Random Feature Model
Chao Ma
Lei Wu
E. Weinan
20
15
0
13 Aug 2020
What Neural Networks Memorize and Why: Discovering the Long Tail via Influence Estimation
Vitaly Feldman
Chiyuan Zhang
TDI
24
440
0
09 Aug 2020
Benign Overfitting and Noisy Features
Zhu Li
Weijie Su
Dino Sejdinovic
10
22
0
06 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
20
61
0
03 Aug 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
47
95
0
25 Jul 2020
Canonical thresholding for non-sparse high-dimensional linear regression
I. Silin
Jianqing Fan
6
5
0
24 Jul 2020
Early Stopping in Deep Networks: Double Descent and How to Eliminate it
Reinhard Heckel
Fatih Yilmaz
26
43
0
20 Jul 2020
Prediction in latent factor regression: Adaptive PCR and beyond
Xin Bing
F. Bunea
Seth Strimas-Mackey
M. Wegkamp
17
2
0
20 Jul 2020
Large scale analysis of generalization error in learning using margin based classification methods
Hanwen Huang
Qinglong Yang
9
8
0
16 Jul 2020
Understanding Implicit Regularization in Over-Parameterized Single Index Model
Jianqing Fan
Zhuoran Yang
Mengxin Yu
24
16
0
16 Jul 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip H. S. Torr
NoLa
AAML
23
57
0
08 Jul 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
25
3
0
19 Jun 2020
On Sparsity in Overparametrised Shallow ReLU Networks
Jaume de Dios
Joan Bruna
14
14
0
18 Jun 2020
Previous
1
2
3
4
5
6
Next