Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.01258
Cited By
Disentangling Factors of Variation Using Few Labels
3 May 2019
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Disentangling Factors of Variation Using Few Labels"
31 / 31 papers shown
Title
No Representation Rules Them All in Category Discovery
S. Vaze
Andrea Vedaldi
Andrew Zisserman
OOD
37
31
0
28 Nov 2023
Identifying Semantic Component for Robust Molecular Property Prediction
Zijian Li
Zunhong Xu
Ruichu Cai
Zhenhui Yang
Yuguang Yan
Zhifeng Hao
Guan-Hong Chen
Kun Zhang
23
9
0
08 Nov 2023
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
31
4
0
08 Nov 2023
Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning
Geri Skenderi
Luigi Capogrosso
Andrea Toaiari
Matteo Denitto
Franco Fummi
Simone Melzi
Marco Cristani
OOD
31
0
0
13 Oct 2023
Subspace Identification for Multi-Source Domain Adaptation
Zijian Li
Ruichu Cai
Guan-Hong Chen
Boyang Sun
Zhifeng Hao
Anton van den Hengel
34
33
0
07 Oct 2023
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Peng Jin
Hao Li
Ze-Long Cheng
Jinfa Huang
Zhennan Wang
Li-ming Yuan
Chang-rui Liu
Jie Chen
33
31
0
20 May 2023
FUNCK: Information Funnels and Bottlenecks for Invariant Representation Learning
João Machado de Freitas
Bernhard C. Geiger
16
3
0
02 Nov 2022
Multi-objective Deep Data Generation with Correlated Property Control
Shiyu Wang
Xiaojie Guo
Xuanyang Lin
Bo Pan
Yuanqi Du
...
S. Alkhalifa
K. Minbiole
Bill Wuest
Amarda Shehu
Liang Zhao
AI4CE
51
14
0
01 Oct 2022
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
SSL
CoGe
DRL
35
4
0
21 Sep 2022
Weakly Supervised Invariant Representation Learning Via Disentangling Known and Unknown Nuisance Factors
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
32
1
0
15 Sep 2022
Modular Representations for Weak Disentanglement
Andrea Valenti
D. Bacciu
30
0
0
12 Sep 2022
Towards a Solution to Bongard Problems: A Causal Approach
Salahedine Youssef
Matej Zečević
Devendra Singh Dhami
Kristian Kersting
24
5
0
14 Jun 2022
Blackbird's language matrices (BLMs): a new benchmark to investigate disentangled generalisation in neural networks
Paola Merlo
A. An
M. A. Rodriguez
23
9
0
22 May 2022
Leveraging Relational Information for Learning Weakly Disentangled Representations
Andrea Valenti
D. Bacciu
CoGe
DRL
27
5
0
20 May 2022
Towards Racially Unbiased Skin Tone Estimation via Scene Disambiguation
Haiwen Feng
Timo Bolkart
J. Tesch
Michael J. Black
Victoria Fernandez-Abrevaya
19
39
0
08 May 2022
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
22
3
0
01 Feb 2022
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
18
1
0
20 Dec 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
32
80
0
08 Sep 2021
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
48
38
0
07 Apr 2021
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
20
81
0
16 Dec 2020
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
35
104
0
03 Nov 2020
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
24
20
0
28 Jul 2020
A causal view of compositional zero-shot recognition
Y. Atzmon
Felix Kreuk
Uri Shalit
Gal Chechik
OCL
BDL
CML
61
117
0
25 Jun 2020
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
89
72
0
06 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
30
133
0
07 Jun 2019
Learning Interpretable Disentangled Representations using Adversarial VAEs
Mhd Hasan Sarhan
Abouzar Eslami
Nassir Navab
Shadi Albarqouni
DRL
OOD
17
20
0
17 Apr 2019
Building machines that adapt and compute like brains
Brenden Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
890
0
11 Nov 2017
1