Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.02199
Cited By
Nonlinear Approximation and (Deep) ReLU Networks
5 May 2019
Ingrid Daubechies
Ronald A. DeVore
S. Foucart
Boris Hanin
G. Petrova
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nonlinear Approximation and (Deep) ReLU Networks"
22 / 22 papers shown
Title
Deep Kalman Filters Can Filter
Blanka Hovart
Anastasis Kratsios
Yannick Limmer
Xuwei Yang
45
1
0
31 Dec 2024
Fast and Exact Enumeration of Deep Networks Partitions Regions
Randall Balestriero
Yann LeCun
18
5
0
20 Jan 2024
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement
Holger Boche
Adalbert Fono
Gitta Kutyniok
FaML
31
4
0
18 Jan 2024
Parameter-varying neural ordinary differential equations with partition-of-unity networks
Kookjin Lee
N. Trask
22
2
0
01 Oct 2022
CP-PINNs: Data-Driven Changepoints Detection in PDEs Using Online Optimized Physics-Informed Neural Networks
Zhi-Ling Dong
Pawel Polak
PINN
21
1
0
18 Aug 2022
Sparse Deep Neural Network for Nonlinear Partial Differential Equations
Yuesheng Xu
T. Zeng
30
5
0
27 Jul 2022
Approximation of functions with one-bit neural networks
C. S. Güntürk
Weilin Li
17
8
0
16 Dec 2021
Sobolev-type embeddings for neural network approximation spaces
Philipp Grohs
F. Voigtlaender
14
1
0
28 Oct 2021
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
22
4
0
31 Aug 2021
Neural Network Approximation of Refinable Functions
Ingrid Daubechies
Ronald A. DeVore
Nadav Dym
Shira Faigenbaum-Golovin
S. Kovalsky
Kung-Chin Lin
Josiah Park
G. Petrova
B. Sober
23
14
0
28 Jul 2021
High-Dimensional Distribution Generation Through Deep Neural Networks
Dmytro Perekrestenko
Léandre Eberhard
Helmut Bölcskei
OOD
27
6
0
26 Jul 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
48
36
0
06 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
24
43
0
04 Jul 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
18
45
0
10 Mar 2021
Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks
Jonathan Ashbrock
A. Powell
MQ
28
5
0
25 Aug 2020
Approximation of Smoothness Classes by Deep Rectifier Networks
Mazen Ali
A. Nouy
9
9
0
30 Jul 2020
Depth separation for reduced deep networks in nonlinear model reduction: Distilling shock waves in nonlinear hyperbolic problems
Donsub Rim
Luca Venturi
Joan Bruna
Benjamin Peherstorfer
17
9
0
28 Jul 2020
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
16
236
0
27 Nov 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
27
324
0
21 May 2019
Mad Max: Affine Spline Insights into Deep Learning
Randall Balestriero
Richard Baraniuk
AI4CE
31
78
0
17 May 2018
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
253
3,239
0
24 Nov 2016
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,743
0
26 Sep 2016
1