Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1905.07769
Cited By
v1
v2
v3 (latest)
Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks
Annales De L Institut Henri Poincare-probabilites Et Statistiques (Ann. Inst. Henri Poincaré Probab. Stat.), 2019
19 May 2019
Kaitong Hu
Zhenjie Ren
David Siska
Lukasz Szpruch
MLT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks"
50 / 60 papers shown
Title
Mean-Field Generalisation Bounds for Learning Controls in Stochastic Environments
Boris Baros
Samuel N. Cohen
C. Reisinger
AI4CE
102
1
0
21 Aug 2025
Continuous Policy and Value Iteration for Stochastic Control Problems and Its Convergence
Qi Feng
Gu Wang
94
1
0
09 Jun 2025
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Haoxuan Chen
Yinuo Ren
Martin Renqiang Min
Lexing Ying
Zachary Izzo
DiffM
MedIm
285
11
0
04 Jun 2025
Non-convex entropic mean-field optimization via Best Response flow
Razvan-Andrei Lascu
Mateusz B. Majka
170
1
0
28 May 2025
Convergence of Time-Averaged Mean Field Gradient Descent Dynamics for Continuous Multi-Player Zero-Sum Games
Yulong Lu
Pierre Monmarché
MLT
193
3
0
12 May 2025
Mirror Mean-Field Langevin Dynamics
Anming Gu
Juno Kim
225
1
0
05 May 2025
Ultra-fast feature learning for the training of two-layer neural networks in the two-timescale regime
Raphael Barboni
Gabriel Peyré
François-Xavier Vialard
MLT
265
2
0
25 Apr 2025
Propagation of Chaos for Mean-Field Langevin Dynamics and its Application to Model Ensemble
Atsushi Nitanda
Anzelle Lee
Damian Tan Xing Kai
Mizuki Sakaguchi
Taiji Suzuki
AI4CE
343
2
0
09 Feb 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
253
1
0
25 Jan 2025
Well-posedness and approximation of reflected McKean-Vlasov SDEs with applications
P. D. Hinds
A. Sharma
M. V. Tretyakov
119
3
0
28 Dec 2024
Linear convergence of proximal descent schemes on the Wasserstein space
Razvan-Andrei Lascu
Mateusz B. Majka
David Siska
Łukasz Szpruch
293
1
0
22 Nov 2024
Solving Fredholm Integral Equations of the Second Kind via Wasserstein Gradient Flows
F. R. Crucinio
A. M. Johansen
123
1
0
29 Sep 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
International Conference on Learning Representations (ICLR), 2024
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
232
11
0
14 Aug 2024
Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior
Anming Gu
Edward Chien
Kristjan Greenewald
298
9
0
11 Jun 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass
Joaquin Fontbona
MLT
FedML
427
3
0
30 May 2024
Improved Particle Approximation Error for Mean Field Neural Networks
Atsushi Nitanda
151
11
0
24 May 2024
Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
Yiwen Kou
Zixiang Chen
Quanquan Gu
Sham Kakade
184
2
0
18 Apr 2024
Neural McKean-Vlasov Processes: Distributional Dependence in Diffusion Processes
Haoming Yang
Ali Hasan
Yuting Ng
Vahid Tarokh
DiffM
169
6
0
15 Apr 2024
Mean-field Analysis on Two-layer Neural Networks from a Kernel Perspective
International Conference on Machine Learning (ICML), 2024
Shokichi Takakura
Taiji Suzuki
MLT
311
7
0
22 Mar 2024
Mirror Descent-Ascent for mean-field min-max problems
Razvan-Andrei Lascu
Mateusz B. Majka
Lukasz Szpruch
276
1
0
12 Feb 2024
Generalization Error of Graph Neural Networks in the Mean-field Regime
International Conference on Machine Learning (ICML), 2024
Gholamali Aminian
Yixuan He
Gesine Reinert
Lukasz Szpruch
Samuel N. Cohen
292
4
0
10 Feb 2024
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
404
5
0
26 Dec 2023
Symmetric Mean-field Langevin Dynamics for Distributional Minimax Problems
International Conference on Learning Representations (ICLR), 2023
Juno Kim
Kakei Yamamoto
Kazusato Oko
Zhuoran Yang
Taiji Suzuki
294
12
0
02 Dec 2023
Nonlinear Hamiltonian Monte Carlo & its Particle Approximation
Nawaf Bou-Rabee
Katharina Schuh
128
8
0
22 Aug 2023
Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction
Taiji Suzuki
Denny Wu
Atsushi Nitanda
143
20
0
12 Jun 2023
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
E S A I M: Probability & Statistics (ESAIM-PS), 2023
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
228
18
0
23 Mar 2023
Doubly Regularized Entropic Wasserstein Barycenters
Lénaïc Chizat
240
16
0
21 Mar 2023
Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems
International Conference on Machine Learning (ICML), 2023
Atsushi Nitanda
Kazusato Oko
Denny Wu
Nobuhito Takenouchi
Taiji Suzuki
169
4
0
06 Mar 2023
PAPAL: A Provable PArticle-based Primal-Dual ALgorithm for Mixed Nash Equilibrium
Shihong Ding
Hanze Dong
Cong Fang
Zhouchen Lin
Tong Zhang
153
1
0
02 Mar 2023
Mean Field Optimization Problem Regularized by Fisher Information
J. Claisse
Giovanni Conforti
Zhenjie Ren
Song-bo Wang
186
5
0
12 Feb 2023
Two-Scale Gradient Descent Ascent Dynamics Finds Mixed Nash Equilibria of Continuous Games: A Mean-Field Perspective
International Conference on Machine Learning (ICML), 2022
Yulong Lu
MLT
AI4CE
204
27
0
17 Dec 2022
Uniform-in-time propagation of chaos for mean field Langevin dynamics
Annales De L Institut Henri Poincare-probabilites Et Statistiques (Ann. Inst. Henri Poincaré Probab. Stat.), 2022
Fan Chen
Zhenjie Ren
Song-bo Wang
308
34
0
06 Dec 2022
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
275
5
0
28 Oct 2022
Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence
Diyuan Wu
Vyacheslav Kungurtsev
Marco Mondelli
144
3
0
13 Oct 2022
Solving Fredholm Integral Equations of the First Kind via Wasserstein Gradient Flows
F. R. Crucinio
Valentin De Bortoli
Arnaud Doucet
A. M. Johansen
179
3
0
16 Sep 2022
Excess Risk of Two-Layer ReLU Neural Networks in Teacher-Student Settings and its Superiority to Kernel Methods
International Conference on Learning Representations (ICLR), 2022
Shunta Akiyama
Taiji Suzuki
154
8
0
30 May 2022
Mean-Field Analysis of Two-Layer Neural Networks: Global Optimality with Linear Convergence Rates
Jingwei Zhang
Xunpeng Huang
Jincheng Yu
MLT
192
1
0
19 May 2022
Trajectory Inference via Mean-field Langevin in Path Space
Neural Information Processing Systems (NeurIPS), 2022
Lénaïc Chizat
Stephen X. Zhang
Matthieu Heitz
Geoffrey Schiebinger
320
31
0
14 May 2022
GANs as Gradient Flows that Converge
Journal of machine learning research (JMLR), 2022
Yu‐Jui Huang
Yuchong Zhang
154
6
0
05 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
International Conference on Learning Representations (ICLR), 2022
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
198
15
0
22 Apr 2022
Convex Analysis of the Mean Field Langevin Dynamics
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
353
74
0
25 Jan 2022
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime
International Conference on Machine Learning (ICML), 2022
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
249
21
0
18 Jan 2022
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Journal of machine learning research (JMLR), 2021
Aleksandr Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
254
15
0
03 Nov 2021
Parameter Estimation for the McKean-Vlasov Stochastic Differential Equation
Louis Sharrock
N. Kantas
P. Parpas
G. Pavliotis
183
30
0
25 Jun 2021
Stochastic gradient descent with noise of machine learning type. Part II: Continuous time analysis
Journal of nonlinear science (J. Nonlinear Sci.), 2021
Stephan Wojtowytsch
184
37
0
04 Jun 2021
Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis
Neural Information Processing Systems (NeurIPS), 2020
Atsushi Nitanda
Denny Wu
Taiji Suzuki
347
31
0
31 Dec 2020
Mathematical Models of Overparameterized Neural Networks
Proceedings of the IEEE (Proc. IEEE), 2020
Cong Fang
Hanze Dong
Tong Zhang
253
25
0
27 Dec 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
CSIAM Transactions on Applied Mathematics (CSIAM Trans. Appl. Math.), 2020
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
264
146
0
22 Sep 2020
Ergodicity of the underdamped mean-field Langevin dynamics
The Annals of Applied Probability (Ann. Appl. Probab.), 2020
A. Kazeykina
Zhenjie Ren
Xiaolu Tan
Junjian Yang
233
18
0
29 Jul 2020
On the Empirical Neural Tangent Kernel of Standard Finite-Width Convolutional Neural Network Architectures
M. Samarin
Volker Roth
David Belius
100
4
0
24 Jun 2020
1
2
Next