Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1905.11001
Cited By
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
27 May 2019
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks"
36 / 136 papers shown
Title
Learning to Cascade: Confidence Calibration for Improving the Accuracy and Computational Cost of Cascade Inference Systems
Shohei Enomoto
Takeharu Eda
UQCV
46
17
0
15 Apr 2021
Improving Calibration for Long-Tailed Recognition
Zhisheng Zhong
Jiequan Cui
Shu Liu
Jiaya Jia
21
288
0
01 Apr 2021
AlignMixup: Improving Representations By Interpolating Aligned Features
Shashanka Venkataramanan
Ewa Kijak
Laurent Amsaleg
Yannis Avrithis
WSOL
33
61
0
29 Mar 2021
Essentials for Class Incremental Learning
Sudhanshu Mittal
Silvio Galesso
Thomas Brox
CLL
19
96
0
18 Feb 2021
Guided Interpolation for Adversarial Training
Chen Chen
Jingfeng Zhang
Xilie Xu
Tianlei Hu
Gang Niu
Gang Chen
Masashi Sugiyama
AAML
30
10
0
15 Feb 2021
When and How Mixup Improves Calibration
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
James Zou
UQCV
31
67
0
11 Feb 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Yogesh S Rawat
M. Shah
241
509
0
15 Jan 2021
Self-Progressing Robust Training
Minhao Cheng
Pin-Yu Chen
Sijia Liu
Shiyu Chang
Cho-Jui Hsieh
Payel Das
AAML
VLM
29
9
0
22 Dec 2020
Uncertainty-Aware Deep Calibrated Salient Object Detection
Jing Zhang
Yuchao Dai
Xin Yu
Mehrtash Harandi
Nick Barnes
Richard I. Hartley
UQCV
EDL
26
6
0
10 Dec 2020
MetaInfoNet: Learning Task-Guided Information for Sample Reweighting
Hongxin Wei
Lei Feng
R. Wang
Bo An
NoLa
25
6
0
09 Dec 2020
PEP: Parameter Ensembling by Perturbation
Alireza Mehrtash
Purang Abolmaesumi
Polina Golland
Tina Kapur
Demian Wassermann
W. Wells
25
10
0
24 Oct 2020
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong
Haoming Jiang
Yuchen Zhuang
Jie Lyu
T. Zhao
Chao Zhang
OODD
27
26
0
22 Oct 2020
Learning Loss for Test-Time Augmentation
Ildoo Kim
Younghoon Kim
Sungwoong Kim
OOD
20
90
0
22 Oct 2020
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
32
63
0
19 Oct 2020
MixCo: Mix-up Contrastive Learning for Visual Representation
Sungnyun Kim
Gihun Lee
Sangmin Bae
Seyoung Yun
SSL
112
80
0
13 Oct 2020
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
20
244
0
09 Oct 2020
Repulsive Attention: Rethinking Multi-head Attention as Bayesian Inference
Bang An
Jie Lyu
Zhenyi Wang
Chunyuan Li
Changwei Hu
Fei Tan
Ruiyi Zhang
Yifan Hu
Changyou Chen
AAML
22
28
0
20 Sep 2020
Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty Regularization
Yu-Ting Chang
Qiaosong Wang
Wei-Chih Hung
Robinson Piramuthu
Yi-Hsuan Tsai
Ming-Hsuan Yang
UQCV
WSOL
22
34
0
03 Aug 2020
Remix: Rebalanced Mixup
Hsin-Ping Chou
Shih-Chieh Chang
Jia-Yu Pan
Wei Wei
Da-Cheng Juan
36
231
0
08 Jul 2020
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
40
25
0
29 Jun 2020
A benchmark study on reliable molecular supervised learning via Bayesian learning
Doyeong Hwang
Grace Lee
Hanseok Jo
Seyoul Yoon
Seongok Ryu
22
9
0
12 Jun 2020
An Empirical Analysis of the Impact of Data Augmentation on Knowledge Distillation
Deepan Das
Haley Massa
Abhimanyu Kulkarni
Theodoros Rekatsinas
21
18
0
06 Jun 2020
Self-Augmentation: Generalizing Deep Networks to Unseen Classes for Few-Shot Learning
Jinhwan Seo
Hong G Jung
Seong-Whan Lee
SSL
12
39
0
01 Apr 2020
Self-Supervised Learning for Domain Adaptation on Point-Clouds
Idan Achituve
Haggai Maron
Gal Chechik
3DPC
35
160
0
29 Mar 2020
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
30
6
0
22 Mar 2020
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
19
7
0
17 Mar 2020
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Amir M. Rahimi
Amirreza Shaban
Ching-An Cheng
Richard I. Hartley
Byron Boots
UQCV
14
68
0
15 Mar 2020
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip Torr
P. Dokania
UQCV
56
444
0
21 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OOD
AAML
27
114
0
17 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
30
15
0
12 Feb 2020
On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration
Kanil Patel
William H. Beluch
Dan Zhang
Michael Pfeiffer
Bin Yang
UQCV
24
30
0
16 Dec 2019
Distance-Based Learning from Errors for Confidence Calibration
Chen Xing
Sercan Ö. Arik
Zizhao Zhang
Tomas Pfister
FedML
23
39
0
03 Dec 2019
Entropic Out-of-Distribution Detection
David Macêdo
T. I. Ren
Cleber Zanchettin
Adriano Oliveira
Teresa B Ludermir
OODD
UQCV
22
31
0
15 Aug 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
Convolutional Neural Networks for Sentence Classification
Yoon Kim
AILaw
VLM
255
13,368
0
25 Aug 2014
Previous
1
2
3