ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12506
  4. Cited By
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
v1v2v3 (latest)

Are Disentangled Representations Helpful for Abstract Visual Reasoning?

Neural Information Processing Systems (NeurIPS), 2019
29 May 2019
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
ArXiv (abs)PDFHTML

Papers citing "Are Disentangled Representations Helpful for Abstract Visual Reasoning?"

50 / 138 papers shown
GlanceNets: Interpretabile, Leak-proof Concept-based Models
GlanceNets: Interpretabile, Leak-proof Concept-based ModelsNeural Information Processing Systems (NeurIPS), 2022
Emanuele Marconato
Baptiste Caramiaux
Stefano Teso
407
75
0
31 May 2022
FaIRCoP: Facial Image Retrieval using Contrastive Personalization
FaIRCoP: Facial Image Retrieval using Contrastive Personalization
Devansh Gupta
Aditya Saini
Drishti Bhasin
Sarthak Bhagat
Shagun Uppal
R. Jain
Ponnurangam Kumaraguru
R. Shah
84
1
0
28 May 2022
Blackbird's language matrices (BLMs): a new benchmark to investigate
  disentangled generalisation in neural networks
Blackbird's language matrices (BLMs): a new benchmark to investigate disentangled generalisation in neural networks
Paola Merlo
A. An
M. A. Rodriguez
158
9
0
22 May 2022
Inductive Biases for Object-Centric Representations in the Presence of
  Complex Textures
Inductive Biases for Object-Centric Representations in the Presence of Complex Textures
Samuele Papa
Ole Winther
Andrea Dittadi
OCL
401
15
0
18 Apr 2022
Lost in Latent Space: Disentangled Models and the Challenge of
  Combinatorial Generalisation
Lost in Latent Space: Disentangled Models and the Challenge of Combinatorial Generalisation
M. Montero
J. Bowers
Rui Ponte Costa
Casimir J. H. Ludwig
Gaurav Malhotra
DRLCoGe
211
14
0
05 Apr 2022
Autoencoder for Synthetic to Real Generalization: From Simple to More
  Complex Scenes
Autoencoder for Synthetic to Real Generalization: From Simple to More Complex ScenesInternational Conference on Pattern Recognition (ICPR), 2022
S. Cruz
B. Taetz
Thomas Stifter
D. Stricker
221
3
0
01 Apr 2022
Clustering units in neural networks: upstream vs downstream information
Clustering units in neural networks: upstream vs downstream information
Richard D. Lange
David Rolnick
Konrad Paul Kording
156
12
0
22 Mar 2022
A Contrastive Objective for Learning Disentangled Representations
A Contrastive Objective for Learning Disentangled RepresentationsEuropean Conference on Computer Vision (ECCV), 2022
Jonathan Kahana
Yedid Hoshen
SSL
113
17
0
21 Mar 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General IntelligenceFrontiers in Computational Neuroscience (Front. Comput. Neurosci.), 2022
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
250
52
0
17 Mar 2022
Disentangling Domain and Content
Disentangling Domain and Content
Dan-Andrei Iliescu
A. Mikhailiuk
Damon J. Wischik
Rafał K. Mantiuk
DRL
163
0
0
15 Feb 2022
Learning Disentangled Behaviour Patterns for Wearable-based Human
  Activity Recognition
Learning Disentangled Behaviour Patterns for Wearable-based Human Activity RecognitionProceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies (IMWUT), 2022
Jie Su
Z. Wen
Tao Lin
Yu Guan
136
27
0
15 Feb 2022
Right for the Right Latent Factors: Debiasing Generative Models via
  Disentanglement
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CMLDRL
213
3
0
01 Feb 2022
Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's
  Progressive Matrices
Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive MatricesACM Computing Surveys (ACM CSUR), 2022
Mikolaj Malkiñski
Jacek Mańdziuk
491
54
0
28 Jan 2022
Disentanglement and Generalization Under Correlation Shifts
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
238
7
0
29 Dec 2021
Latte: Cross-framework Python Package for Evaluation of Latent-Based
  Generative Models
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
125
1
0
20 Dec 2021
Drop, Swap, and Generate: A Self-Supervised Approach for Generating
  Neural Activity
Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural ActivitybioRxiv (bioRxiv), 2021
Ran Liu
Mehdi Azabou
M. Dabagia
Chi-Heng Lin
M. G. Azar
Keith B. Hengen
Michal Valko
Eva L. Dyer
OCLSSLDRL
176
44
0
03 Nov 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Self-Supervised Learning Disentangled Group Representation as FeatureNeural Information Processing Systems (NeurIPS), 2021
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
222
72
0
28 Oct 2021
Group-disentangled Representation Learning with Weakly-Supervised
  Regularization
Group-disentangled Representation Learning with Weakly-Supervised Regularization
Linh-Tam Tran
Amir Hosein Khasahmadi
Aditya Sanghi
Saeid Asgari Taghanaki
DRL
185
2
0
23 Oct 2021
Boxhead: A Dataset for Learning Hierarchical Representations
Boxhead: A Dataset for Learning Hierarchical Representations
Yukun Chen
Andrea Dittadi
Frederik Trauble
Stefan Bauer
Bernhard Schölkopf
CML
262
2
0
07 Oct 2021
On the relationship between disentanglement and multi-task learning
On the relationship between disentanglement and multi-task learning
Lukasz Maziarka
A. Nowak
Maciej Wołczyk
Andrzej Bedychaj
OODDRL
217
4
0
07 Oct 2021
DAReN: A Collaborative Approach Towards Reasoning And Disentangling
DAReN: A Collaborative Approach Towards Reasoning And DisentanglingInternational Conference on Pattern Recognition (ICPR), 2021
Pritish Sahu
Kalliopi Basioti
Vladimir Pavlovic
257
1
0
27 Sep 2021
Be More Active! Understanding the Differences between Mean and Sampled
  Representations of Variational Autoencoders
Be More Active! Understanding the Differences between Mean and Sampled Representations of Variational AutoencodersJournal of machine learning research (JMLR), 2021
Lisa Bonheme
M. Grzes
DRL
264
7
0
26 Sep 2021
Discovery of New Multi-Level Features for Domain Generalization via
  Knowledge Corruption
Discovery of New Multi-Level Features for Domain Generalization via Knowledge CorruptionInternational Conference on Pattern Recognition (ICPR), 2021
A. Frikha
Denis Krompass
Volker Tresp
OOD
215
1
0
09 Sep 2021
Unsupervised Disentanglement without Autoencoding: Pitfalls and Future
  Directions
Unsupervised Disentanglement without Autoencoding: Pitfalls and Future Directions
Andrea Burns
Aaron Sarna
Dilip Krishnan
Aaron Maschinot
CoGeDRLSSL
196
4
0
14 Aug 2021
Constellation: Learning relational abstractions over objects for
  compositional imagination
Constellation: Learning relational abstractions over objects for compositional imagination
James C. R. Whittington
Rishabh Kabra
Loic Matthey
Christopher P. Burgess
Alexander Lerchner
OCLGNN
173
6
0
23 Jul 2021
The Role of Pretrained Representations for the OOD Generalization of
  Reinforcement Learning Agents
The Role of Pretrained Representations for the OOD Generalization of Reinforcement Learning Agents
Andrea Dittadi
Frederik Trauble
M. Wuthrich
Felix Widmaier
Peter V. Gehler
Ole Winther
Francesco Locatello
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
209
19
0
12 Jul 2021
Proceedings of the First Workshop on Weakly Supervised Learning (WeaSuL)
Proceedings of the First Workshop on Weakly Supervised Learning (WeaSuL)
Michael A. Hedderich
Benjamin Roth
Katharina Kann
Barbara Plank
Alex Ratner
Dietrich Klakow
168
0
0
08 Jul 2021
Generalization and Robustness Implications in Object-Centric Learning
Generalization and Robustness Implications in Object-Centric Learning
Andrea Dittadi
Samuele Papa
Michele De Vita
Bernhard Schölkopf
Ole Winther
Francesco Locatello
OCLOOD
287
82
0
01 Jul 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional AssaysNeural Information Processing Systems (NeurIPS), 2021
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
314
22
0
30 Jun 2021
An Image is Worth More Than a Thousand Words: Towards Disentanglement in
  the Wild
An Image is Worth More Than a Thousand Words: Towards Disentanglement in the WildNeural Information Processing Systems (NeurIPS), 2021
Aviv Gabbay
Niv Cohen
Yedid Hoshen
CoGeDRL
225
37
0
29 Jun 2021
Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant
  Classification
Autoencoder Based Inter-Vehicle Generalization for In-Cabin Occupant Classification
S. Cruz
B. Taetz
Oliver Wasenmüller
Thomas Stifter
D. Stricker
121
4
0
07 May 2021
A Novel Estimator of Mutual Information for Learning to Disentangle
  Textual Representations
A Novel Estimator of Mutual Information for Learning to Disentangle Textual RepresentationsAnnual Meeting of the Association for Computational Linguistics (ACL), 2021
Pierre Colombo
Chloé Clavel
Pablo Piantanida
AAMLDRL
323
53
0
06 May 2021
Recovering Barabási-Albert Parameters of Graphs through
  Disentanglement
Recovering Barabási-Albert Parameters of Graphs through Disentanglement
Cristina Guzman
Daphna Keidar
Tristan Meynier
Andreas Opedal
Niklas Stoehr
176
0
0
03 May 2021
Inspect, Understand, Overcome: A Survey of Practical Methods for AI
  Safety
Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety
Sebastian Houben
Stephanie Abrecht
Maram Akila
Andreas Bär
Felix Brockherde
...
Serin Varghese
Michael Weber
Sebastian J. Wirkert
Tim Wirtz
Matthias Woehrle
AAML
317
61
0
29 Apr 2021
Where and What? Examining Interpretable Disentangled Representations
Where and What? Examining Interpretable Disentangled RepresentationsComputer Vision and Pattern Recognition (CVPR), 2021
Xinqi Zhu
Chang Xu
Dacheng Tao
FAttDRL
201
46
0
07 Apr 2021
Scaling-up Disentanglement for Image Translation
Scaling-up Disentanglement for Image TranslationIEEE International Conference on Computer Vision (ICCV), 2021
Aviv Gabbay
Yedid Hoshen
CoGe
143
22
0
25 Mar 2021
Raven's Progressive Matrices Completion with Latent Gaussian Process
  Priors
Raven's Progressive Matrices Completion with Latent Gaussian Process PriorsAAAI Conference on Artificial Intelligence (AAAI), 2021
Fan Shi
Bin Li
Xiangyang Xue
LRM
286
10
0
22 Mar 2021
Adversarial Graph Disentanglement
Adversarial Graph DisentanglementIEEE Transactions on Artificial Intelligence (IEEE TAI), 2021
Shuai Zheng
Zhenfeng Zhu
Zhizhe Liu
Shuiwang Ji
Yao Zhao
270
10
0
12 Mar 2021
Towards Causal Representation Learning
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OODCMLAI4CE
336
341
0
22 Feb 2021
Towards Building A Group-based Unsupervised Representation
  Disentanglement Framework
Towards Building A Group-based Unsupervised Representation Disentanglement FrameworkInternational Conference on Learning Representations (ICLR), 2021
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGeDRL
203
32
0
20 Feb 2021
Disentangled Representations from Non-Disentangled Models
Disentangled Representations from Non-Disentangled Models
Valentin Khrulkov
L. Mirvakhabova
Ivan Oseledets
Artem Babenko
OCLDRLCoGe
105
17
0
11 Feb 2021
On Disentanglement in Gaussian Process Variational Autoencoders
On Disentanglement in Gaussian Process Variational Autoencoders
Simon Bing
Vincent Fortuin
Gunnar Rätsch
CMLCoGeBDLDRL
189
9
0
10 Feb 2021
CDPAM: Contrastive learning for perceptual audio similarity
CDPAM: Contrastive learning for perceptual audio similarityIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Pranay Manocha
Zeyu Jin
Richard Y. Zhang
Adam Finkelstein
201
77
0
09 Feb 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of MetricsIEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGeDRL
267
100
0
16 Dec 2020
CompositeTasking: Understanding Images by Spatial Composition of Tasks
CompositeTasking: Understanding Images by Spatial Composition of TasksComputer Vision and Pattern Recognition (CVPR), 2020
Nikola Popovic
D. Paudel
Thomas Probst
Guolei Sun
Luc Van Gool
200
7
0
16 Dec 2020
Odd-One-Out Representation Learning
Odd-One-Out Representation Learning
Salman Mohammadi
Anders Kirk Uhrenholt
B. S. Jensen
SSLOODDRL
139
4
0
14 Dec 2020
Demystifying Deep Neural Networks Through Interpretation: A Survey
Demystifying Deep Neural Networks Through Interpretation: A Survey
Giang Dao
Minwoo Lee
FaMLFAtt
243
1
0
13 Dec 2020
ADD: Augmented Disentanglement Distillation Framework for Improving
  Stock Trend Forecasting
ADD: Augmented Disentanglement Distillation Framework for Improving Stock Trend Forecasting
H. Tang
Lijun Wu
Yuante Li
Jiang Bian
AIFin
82
5
0
11 Dec 2020
On the Binding Problem in Artificial Neural Networks
On the Binding Problem in Artificial Neural Networks
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
575
288
0
09 Dec 2020
A Metric for Linear Symmetry-Based Disentanglement
A Metric for Linear Symmetry-Based Disentanglement
L. Rey
Loek Tonnaer
Vlado Menkovski
Mike Holenderski
J. Portegies
99
1
0
26 Nov 2020
Previous
123
Next