ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12506
  4. Cited By
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
v1v2v3 (latest)

Are Disentangled Representations Helpful for Abstract Visual Reasoning?

Neural Information Processing Systems (NeurIPS), 2019
29 May 2019
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
ArXiv (abs)PDFHTML

Papers citing "Are Disentangled Representations Helpful for Abstract Visual Reasoning?"

38 / 138 papers shown
Factorized Gaussian Process Variational Autoencoders
Factorized Gaussian Process Variational Autoencoders
Metod Jazbec
Michael Pearce
Vincent Fortuin
BDLDRL
176
7
0
14 Nov 2020
On the Transferability of VAE Embeddings using Relational Knowledge with
  Semi-Supervision
On the Transferability of VAE Embeddings using Relational Knowledge with Semi-Supervision
Harald Stromfelt
Luke Dickens
Artur Garcez
A. Russo
DRL
153
2
0
13 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic SettingsInternational Conference on Learning Representations (ICLR), 2020
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
366
86
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their EvaluationJournal of machine learning research (JMLR), 2020
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
182
77
0
27 Oct 2020
Robust Disentanglement of a Few Factors at a Time
Robust Disentanglement of a Few Factors at a TimeNeural Information Processing Systems (NeurIPS), 2020
Benjamin Estermann
Markus Marks
M. Yanik
CoGeOODDRL
156
3
0
26 Oct 2020
Learning disentangled representations with the Wasserstein Autoencoder
Learning disentangled representations with the Wasserstein Autoencoder
Benoit Gaujac
Ilya Feige
David Barber
OODCoGeDRL
173
6
0
07 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
248
5
0
05 Oct 2020
Geometric Disentanglement by Random Convex Polytopes
Geometric Disentanglement by Random Convex Polytopes
M. Joswig
M. Kaluba
Lukas Ruff
173
4
0
29 Sep 2020
DynamicVAE: Decoupling Reconstruction Error and Disentangled
  Representation Learning
DynamicVAE: Decoupling Reconstruction Error and Disentangled Representation Learning
Huajie Shao
Haohong Lin
Qinmin Yang
Shuochao Yao
Han Zhao
Tarek Abdelzaher
DRL
198
0
0
15 Sep 2020
Naive Artificial Intelligence
Naive Artificial Intelligence
T. Barak
Yehonatan Avidan
Y. Loewenstein
107
0
0
04 Sep 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled RepresentationsAAAI Conference on Artificial Intelligence (AAAI), 2020
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OODDRL
151
26
0
28 Jul 2020
Data-efficient visuomotor policy training using reinforcement learning
  and generative models
Data-efficient visuomotor policy training using reinforcement learning and generative models
Ali Ghadirzadeh
Petra Poklukar
Ville Kyrki
Danica Kragic
Mårten Björkman
OffRL
211
9
0
26 Jul 2020
Learning Disentangled Representations with Latent Variation
  Predictability
Learning Disentangled Representations with Latent Variation PredictabilityEuropean Conference on Computer Vision (ECCV), 2020
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGeDRL
212
27
0
25 Jul 2020
Few-shot Visual Reasoning with Meta-analogical Contrastive Learning
Few-shot Visual Reasoning with Meta-analogical Contrastive LearningNeural Information Processing Systems (NeurIPS), 2020
Youngsung Kim
Jinwoo Shin
Eunho Yang
Sung Ju Hwang
NAI
149
27
0
23 Jul 2020
Disentangled Variational Autoencoder based Multi-Label Classification
  with Covariance-Aware Multivariate Probit Model
Disentangled Variational Autoencoder based Multi-Label Classification with Covariance-Aware Multivariate Probit ModelInternational Joint Conference on Artificial Intelligence (IJCAI), 2020
Junwen Bai
Shufeng Kong
Daniel Schwalbe-Koda
DRL
112
55
0
12 Jul 2020
Extrapolatable Relational Reasoning With Comparators in Low-Dimensional
  Manifolds
Extrapolatable Relational Reasoning With Comparators in Low-Dimensional Manifolds
Duo Wang
M. Jamnik
Pietro Lio
OOD
164
1
0
15 Jun 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated DataInternational Conference on Machine Learning (ICML), 2020
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OODCML
248
128
0
14 Jun 2020
Adversarial Canonical Correlation Analysis
Adversarial Canonical Correlation Analysis
B. Dutton
CMLAAML
114
1
0
20 May 2020
A Review on Deep Learning Techniques for Video Prediction
A Review on Deep Learning Techniques for Video PredictionIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Sergiu Oprea
P. Martinez-Gonzalez
Alberto Garcia-Garcia
John Alejandro Castro-Vargas
S. Orts-Escolano
Jose Garcia-Rodriguez
Antonis Argyros
283
295
0
10 Apr 2020
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Weakly-Supervised Reinforcement Learning for Controllable BehaviorNeural Information Processing Systems (NeurIPS), 2020
Lisa Lee
Benjamin Eysenbach
Ruslan Salakhutdinov
S. Gu
Chelsea Finn
SSL
232
26
0
06 Apr 2020
Better Set Representations For Relational Reasoning
Better Set Representations For Relational Reasoning
Qian Huang
Horace He
Ashutosh Kumar Singh
Yan Zhang
Ser-Nam Lim
Austin R. Benson
NAIOCLGNN
289
1
0
09 Mar 2020
q-VAE for Disentangled Representation Learning and Latent Dynamical
  Systems
q-VAE for Disentangled Representation Learning and Latent Dynamical SystemsIEEE Robotics and Automation Letters (RA-L), 2020
Taisuke Kobayashis
BDLDRL
163
24
0
04 Mar 2020
Representation Learning Through Latent Canonicalizations
Representation Learning Through Latent CanonicalizationsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2019
Or Litany
Ari S. Morcos
Srinath Sridhar
Leonidas Guibas
Judy Hoffman
SSLOODDRL
108
2
0
26 Feb 2020
Learning Group Structure and Disentangled Representations of Dynamical
  Environments
Learning Group Structure and Disentangled Representations of Dynamical Environments
Robin Quessard
Thomas D. Barrett
W. Clements
DRL
165
22
0
17 Feb 2020
Stratified Rule-Aware Network for Abstract Visual Reasoning
Stratified Rule-Aware Network for Abstract Visual ReasoningAAAI Conference on Artificial Intelligence (AAAI), 2020
Sheng Hu
Yuqing Ma
Xianglong Liu
Yanlu Wei
Shihao Bai
264
120
0
17 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without CompromisesInternational Conference on Machine Learning (ICML), 2020
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGeOODDRL
665
347
0
07 Feb 2020
On Implicit Regularization in $β$-VAEs
On Implicit Regularization in βββ-VAEsInternational Conference on Machine Learning (ICML), 2020
Abhishek Kumar
Ben Poole
DRL
599
58
0
31 Jan 2020
Abstract Reasoning with Distracting Features
Abstract Reasoning with Distracting FeaturesNeural Information Processing Systems (NeurIPS), 2019
Kecheng Zheng
Zhengjun Zha
Wei Wei
175
78
0
02 Dec 2019
Modeling Gestalt Visual Reasoning on the Raven's Progressive Matrices
  Intelligence Test Using Generative Image Inpainting Techniques
Modeling Gestalt Visual Reasoning on the Raven's Progressive Matrices Intelligence Test Using Generative Image Inpainting Techniques
Tianyu Hua
M. Kunda
157
3
0
18 Nov 2019
How a minimal learning agent can infer the existence of unobserved
  variables in a complex environment
How a minimal learning agent can infer the existence of unobserved variables in a complex environmentMinds and Machines (MM), 2019
K. Ried
B. Eva
Thomas Müller
Hans J. Briegel
127
18
0
15 Oct 2019
Temporal Consistency Objectives Regularize the Learning of Disentangled
  Representations
Temporal Consistency Objectives Regularize the Learning of Disentangled Representations
Gabriele Valvano
A. Chartsias
Andrea Leo
Sotirios A. Tsaftaris
OODMedIm
136
10
0
29 Aug 2019
GENESIS: Generative Scene Inference and Sampling with Object-Centric
  Latent Representations
GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent RepresentationsInternational Conference on Learning Representations (ICLR), 2019
Martin Engelcke
Adam R. Kosiorek
Oiwi Parker Jones
Ingmar Posner
OCL
471
326
0
30 Jul 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement DatasetNeural Information Processing Systems (NeurIPS), 2019
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OODDRL
274
148
0
07 Jun 2019
On the Fairness of Disentangled Representations
On the Fairness of Disentangled RepresentationsNeural Information Processing Systems (NeurIPS), 2019
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaMLDRL
177
239
0
31 May 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation LearningInternational Conference on Learning Representations (ICLR), 2019
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OODDRL
350
83
0
29 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRLCMLCoGe
201
126
0
03 May 2019
Exact Rate-Distortion in Autoencoders via Echo Noise
Exact Rate-Distortion in Autoencoders via Echo Noise
Rob Brekelmans
Daniel Moyer
Aram Galstyan
Greg Ver Steeg
171
17
0
15 Apr 2019
Symmetry-Based Disentangled Representation Learning requires Interaction
  with Environments
Symmetry-Based Disentangled Representation Learning requires Interaction with Environments
Hugo Caselles-Dupré
Michael Garcia Ortiz
David Filliat
DRL
208
69
0
30 Mar 2019
Previous
123