ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13662
  4. Cited By
On the Fairness of Disentangled Representations

On the Fairness of Disentangled Representations

31 May 2019
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
    FaML
    DRL
ArXivPDFHTML

Papers citing "On the Fairness of Disentangled Representations"

28 / 78 papers shown
Title
Where and What? Examining Interpretable Disentangled Representations
Where and What? Examining Interpretable Disentangled Representations
Xinqi Zhu
Chang Xu
Dacheng Tao
FAtt
DRL
58
38
0
07 Apr 2021
AI Fairness via Domain Adaptation
AI Fairness via Domain Adaptation
Neil J. Joshi
Philippe Burlina
29
15
0
15 Mar 2021
Fairness in TabNet Model by Disentangled Representation for the
  Prediction of Hospital No-Show
Fairness in TabNet Model by Disentangled Representation for the Prediction of Hospital No-Show
Sabri Boughorbel
Fethi Jarray
A. Kadri
OOD
30
6
0
06 Mar 2021
Towards Building A Group-based Unsupervised Representation
  Disentanglement Framework
Towards Building A Group-based Unsupervised Representation Disentanglement Framework
Tao Yang
Xuanchi Ren
Yuwang Wang
W. Zeng
Nanning Zheng
CoGe
DRL
24
27
0
20 Feb 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
33
81
0
16 Dec 2020
Fairness in Biometrics: a figure of merit to assess biometric
  verification systems
Fairness in Biometrics: a figure of merit to assess biometric verification systems
Tiago de Freitas Pereira
S´ebastien Marcel
24
62
0
04 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
35
80
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
14
66
0
27 Oct 2020
Robust Disentanglement of a Few Factors at a Time
Robust Disentanglement of a Few Factors at a Time
Benjamin Estermann
Markus Marks
M. Yanik
CoGe
OOD
DRL
18
3
0
26 Oct 2020
Say No to the Discrimination: Learning Fair Graph Neural Networks with
  Limited Sensitive Attribute Information
Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information
Enyan Dai
Suhang Wang
FaML
16
241
0
03 Sep 2020
Privacy-preserving Voice Analysis via Disentangled Representations
Privacy-preserving Voice Analysis via Disentangled Representations
Ranya Aloufi
Hamed Haddadi
David E. Boyle
DRL
26
58
0
29 Jul 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
29
20
0
28 Jul 2020
Learning Disentangled Representations with Latent Variation
  Predictability
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
22
26
0
25 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
Investigating Bias and Fairness in Facial Expression Recognition
Investigating Bias and Fairness in Facial Expression Recognition
Tian Xu
J. White
Sinan Kalkan
Hatice Gunes
CVBM
29
158
0
20 Jul 2020
On Disentangled Representations Learned From Correlated Data
On Disentangled Representations Learned From Correlated Data
Frederik Trauble
Elliot Creager
Niki Kilbertus
Francesco Locatello
Andrea Dittadi
Anirudh Goyal
Bernhard Schölkopf
Stefan Bauer
OOD
CML
29
115
0
14 Jun 2020
Fairness in Forecasting and Learning Linear Dynamical Systems
Fairness in Forecasting and Learning Linear Dynamical Systems
Quan-Gen Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
32
7
0
12 Jun 2020
Fairness by Learning Orthogonal Disentangled Representations
Fairness by Learning Orthogonal Disentangled Representations
Mhd Hasan Sarhan
Nassir Navab
Abouzar Eslami
Shadi Albarqouni
FaML
OOD
CML
19
96
0
12 Mar 2020
NestedVAE: Isolating Common Factors via Weak Supervision
NestedVAE: Isolating Common Factors via Weak Supervision
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
DRL
26
21
0
26 Feb 2020
CheXclusion: Fairness gaps in deep chest X-ray classifiers
CheXclusion: Fairness gaps in deep chest X-ray classifiers
Laleh Seyyed-Kalantari
Guanxiong Liu
Matthew B. A. McDermott
Irene Y. Chen
Marzyeh Ghassemi
OOD
37
285
0
14 Feb 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
33
134
0
07 Jun 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OOD
DRL
16
78
0
29 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
34
123
0
03 May 2019
Deformable Generator Networks: Unsupervised Disentanglement of
  Appearance and Geometry
Deformable Generator Networks: Unsupervised Disentanglement of Appearance and Geometry
X. Xing
Ruiqi Gao
Tian Han
Song-Chun Zhu
Ying Nian Wu
DRL
24
28
0
16 Jun 2018
Learning Adversarially Fair and Transferable Representations
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
233
675
0
17 Feb 2018
Building machines that adapt and compute like brains
Building machines that adapt and compute like brains
Brenden M. Lake
J. Tenenbaum
AI4CE
FedML
NAI
AILaw
254
889
0
11 Nov 2017
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
720
0
12 May 2016
Previous
12