Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.00443
Cited By
Dimensionality compression and expansion in Deep Neural Networks
2 June 2019
Stefano Recanatesi
M. Farrell
Madhu S. Advani
Timothy Moore
Guillaume Lajoie
E. Shea-Brown
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dimensionality compression and expansion in Deep Neural Networks"
36 / 36 papers shown
Title
Intermediate Layer Classifiers for OOD generalization
Arnas Uselis
Seong Joon Oh
OOD
53
0
0
07 Apr 2025
Understanding How Nonlinear Layers Create Linearly Separable Features for Low-Dimensional Data
Alec S. Xu
Can Yaras
Peng Wang
Q. Qu
30
0
0
04 Jan 2025
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Jin Hwa Lee
Thomas Jiralerspong
Lei Yu
Yoshua Bengio
Emily Cheng
CoGe
84
0
0
02 Oct 2024
DualFed: Enjoying both Generalization and Personalization in Federated Learning via Hierachical Representations
Guogang Zhu
Xuefeng Liu
Jianwei Niu
Shaojie Tang
Xinghao Wu
Jiayuan Zhang
AI4CE
47
1
0
25 Jul 2024
A Global Geometric Analysis of Maximal Coding Rate Reduction
Peng Wang
Huikang Liu
Druv Pai
Yaodong Yu
Zhihui Zhu
Q. Qu
Yi-An Ma
29
6
0
04 Jun 2024
From Algorithm to Hardware: A Survey on Efficient and Safe Deployment of Deep Neural Networks
Xue Geng
Zhe Wang
Chunyun Chen
Qing Xu
Kaixin Xu
...
Zhenghua Chen
M. Aly
Jie Lin
Min-man Wu
Xiaoli Li
33
1
0
09 May 2024
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
29
1
0
19 Dec 2023
On original and latent space connectivity in deep neural networks
Boyang Gu
Anastasia Borovykh
GNN
3DPC
27
1
0
12 Nov 2023
Outlier Dimensions Encode Task-Specific Knowledge
William Rudman
Catherine Chen
Carsten Eickhoff
11
4
0
26 Oct 2023
Bridging Information-Theoretic and Geometric Compression in Language Models
Emily Cheng
Corentin Kervadec
Marco Baroni
34
16
0
20 Oct 2023
A simple connection from loss flatness to compressed neural representations
Shirui Chen
Stefano Recanatesi
E. Shea-Brown
15
0
0
03 Oct 2023
Exploring Learned Representations of Neural Networks with Principal Component Analysis
Amit Harlev
A. Engel
P. Stinis
Tony Chiang
FAtt
17
0
0
27 Sep 2023
How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model
Francesco Cagnetta
Leonardo Petrini
Umberto M. Tomasini
Alessandro Favero
M. Wyart
BDL
30
22
0
05 Jul 2023
Stable Anisotropic Regularization
William Rudman
Carsten Eickhoff
25
6
0
30 May 2023
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
22
10
0
29 May 2023
Low Rank Optimization for Efficient Deep Learning: Making A Balance between Compact Architecture and Fast Training
Xinwei Ou
Zhangxin Chen
Ce Zhu
Yipeng Liu
21
4
0
22 Mar 2023
Inversion dynamics of class manifolds in deep learning reveals tradeoffs underlying generalisation
Simone Ciceri
Lorenzo Cassani
Matteo Osella
P. Rotondo
P. Pizzochero
M. Gherardi
31
7
0
09 Mar 2023
Relating Regularization and Generalization through the Intrinsic Dimension of Activations
Bradley Brown
Jordan Juravsky
Anthony L. Caterini
G. Loaiza-Ganem
31
3
0
23 Nov 2022
How deep convolutional neural networks lose spatial information with training
Umberto M. Tomasini
Leonardo Petrini
Francesco Cagnetta
M. Wyart
41
9
0
04 Oct 2022
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
Can Yaras
Peng Wang
Zhihui Zhu
Laura Balzano
Qing Qu
22
41
0
19 Sep 2022
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
39
23
0
24 Jun 2022
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
A. Baratin
Romain Laroche
Aaron C. Courville
Alessandro Sordoni
SSL
23
0
0
02 Jun 2022
CNNs Avoid Curse of Dimensionality by Learning on Patches
Vamshi C. Madala
S. Chandrasekaran
Jason Bunk
UQCV
27
5
0
22 May 2022
Origami in N dimensions: How feed-forward networks manufacture linear separability
Christian Keup
M. Helias
13
8
0
21 Mar 2022
Channel redundancy and overlap in convolutional neural networks with channel-wise NNK graphs
David Bonet
Antonio Ortega
Javier Ruiz-Hidalgo
Sarath Shekkizhar
GNN
33
7
0
18 Oct 2021
Channel-Wise Early Stopping without a Validation Set via NNK Polytope Interpolation
David Bonet
Antonio Ortega
Javier Ruiz-Hidalgo
Sarath Shekkizhar
35
15
0
27 Jul 2021
The Foes of Neural Network's Data Efficiency Among Unnecessary Input Dimensions
Vanessa D’Amario
S. Srivastava
Tomotake Sasaki
Xavier Boix
AAML
21
2
0
13 Jul 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
M. Wyart
OOD
36
15
0
06 May 2021
A Theoretical-Empirical Approach to Estimating Sample Complexity of DNNs
Devansh Bisla
Apoorva Nandini Saridena
A. Choromańska
28
8
0
05 May 2021
Deep Nonparametric Regression on Approximate Manifolds: Non-Asymptotic Error Bounds with Polynomial Prefactors
Yuling Jiao
Guohao Shen
Yuanyuan Lin
Jian Huang
36
50
0
14 Apr 2021
Perspective: A Phase Diagram for Deep Learning unifying Jamming, Feature Learning and Lazy Training
Mario Geiger
Leonardo Petrini
M. Wyart
DRL
23
11
0
30 Dec 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
52
34
0
22 Jul 2020
Weakly-correlated synapses promote dimension reduction in deep neural networks
Jianwen Zhou
Haiping Huang
11
6
0
20 Jun 2020
Emergence of Separable Manifolds in Deep Language Representations
Jonathan Mamou
Hang Le
Miguel Angel del Rio
Cory Stephenson
Hanlin Tang
Yoon Kim
SueYeon Chung
AAML
AI4CE
14
38
0
01 Jun 2020
Internal representation dynamics and geometry in recurrent neural networks
Stefan Horoi
Guillaume Lajoie
Guy Wolf
GNN
10
5
0
09 Jan 2020
Intrinsic dimension estimation for locally undersampled data
Vittorio Erba
M. Gherardi
P. Rotondo
14
30
0
18 Jun 2019
1