ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.03741
  4. Cited By
BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent
  Summarization

BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization

10 June 2019
Eva Sharma
Chen Li
Lu Wang
    AILaw
ArXivPDFHTML

Papers citing "BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization"

15 / 65 papers shown
Title
The GEM Benchmark: Natural Language Generation, its Evaluation and
  Metrics
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann
Tosin Adewumi
Karmanya Aggarwal
Pawan Sasanka Ammanamanchi
Aremu Anuoluwapo
...
Nishant Subramani
Wei Xu
Diyi Yang
Akhila Yerukola
Jiawei Zhou
VLM
260
285
0
02 Feb 2021
Muppet: Massive Multi-task Representations with Pre-Finetuning
Muppet: Massive Multi-task Representations with Pre-Finetuning
Armen Aghajanyan
Anchit Gupta
Akshat Shrivastava
Xilun Chen
Luke Zettlemoyer
Sonal Gupta
33
266
0
26 Jan 2021
CTRLsum: Towards Generic Controllable Text Summarization
CTRLsum: Towards Generic Controllable Text Summarization
Junxian He
Wojciech Kry'sciñski
Bryan McCann
Nazneen Rajani
Caiming Xiong
216
138
0
08 Dec 2020
Multi-XScience: A Large-scale Dataset for Extreme Multi-document
  Summarization of Scientific Articles
Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles
Yao Lu
Yue Dong
Laurent Charlin
AILaw
29
113
0
27 Oct 2020
CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
  Summarization Systems
CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems
Yiran Chen
Pengfei Liu
Ming Zhong
Zi-Yi Dou
Danqing Wang
Xipeng Qiu
Xuanjing Huang
ELM
33
24
0
11 Oct 2020
A Baseline Analysis for Podcast Abstractive Summarization
A Baseline Analysis for Podcast Abstractive Summarization
Chujie Zheng
Harry J. Wang
Kunpeng Zhang
Ling Fan
21
12
0
24 Aug 2020
SueNes: A Weakly Supervised Approach to Evaluating Single-Document
  Summarization via Negative Sampling
SueNes: A Weakly Supervised Approach to Evaluating Single-Document Summarization via Negative Sampling
F. S. Bao
Hebi Li
Ge Luo
Minghui Qiu
Yinfei Yang
Youbiao He
Cen Chen
24
4
0
13 May 2020
From Standard Summarization to New Tasks and Beyond: Summarization with
  Manifold Information
From Standard Summarization to New Tasks and Beyond: Summarization with Manifold Information
Shen Gao
Preslav Nakov
Zhaochun Ren
Dongyan Zhao
Rui Yan
23
48
0
10 May 2020
Artemis: A Novel Annotation Methodology for Indicative Single Document
  Summarization
Artemis: A Novel Annotation Methodology for Indicative Single Document Summarization
Rahul Jha
Keping Bi
Yang Li
M. Pakdaman
Asli Celikyilmaz
Ivan Zhiboedov
Kieran McDonald
25
2
0
05 May 2020
MLSUM: The Multilingual Summarization Corpus
MLSUM: The Multilingual Summarization Corpus
Thomas Scialom
Paul-Alexis Dray
Sylvain Lamprier
Benjamin Piwowarski
Jacopo Staiano
32
173
0
30 Apr 2020
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
  Summarization
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
Jingqing Zhang
Yao-Min Zhao
Mohammad Saleh
Peter J. Liu
RALM
3DGS
60
2,018
0
18 Dec 2019
Evaluating the Factual Consistency of Abstractive Text Summarization
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kry'sciñski
Bryan McCann
Caiming Xiong
R. Socher
HILM
45
728
0
28 Oct 2019
On Extractive and Abstractive Neural Document Summarization with
  Transformer Language Models
On Extractive and Abstractive Neural Document Summarization with Transformer Language Models
Sandeep Subramanian
Raymond Li
Jonathan Pilault
C. Pal
248
215
0
07 Sep 2019
Detecting (Un)Important Content for Single-Document News Summarization
Detecting (Un)Important Content for Single-Document News Summarization
Yinfei Yang
F. S. Bao
A. Nenkova
27
18
0
26 Feb 2017
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Zhehuai Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
718
6,750
0
26 Sep 2016
Previous
12