ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.00598
  4. Cited By
Sampling-free Epistemic Uncertainty Estimation Using Approximated
  Variance Propagation

Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation

1 August 2019
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
    UQCV
    UD
    PER
    BDL
ArXivPDFHTML

Papers citing "Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation"

28 / 28 papers shown
Title
Delving into Differentially Private Transformer
Delving into Differentially Private Transformer
Youlong Ding
Xueyang Wu
Yining Meng
Yonggang Luo
Hao Wang
Weike Pan
29
5
0
28 May 2024
A Framework for Variational Inference of Lightweight Bayesian Neural
  Networks with Heteroscedastic Uncertainties
A Framework for Variational Inference of Lightweight Bayesian Neural Networks with Heteroscedastic Uncertainties
D. Schodt
Ryan Brown
Michael Merritt
Samuel Park
Delsin Menolascino
M. Peot
BDL
UQCV
UD
16
1
0
22 Feb 2024
Favour: FAst Variance Operator for Uncertainty Rating
Favour: FAst Variance Operator for Uncertainty Rating
Thomas Dybdahl Ahle
Sahar Karimi
Peter Tak Peter Tang
BDL
19
0
0
21 Nov 2023
Uncertainty Quantification for Image-based Traffic Prediction across
  Cities
Uncertainty Quantification for Image-based Traffic Prediction across Cities
Alexander Timans
Nina Wiedemann
Nishant Kumar
Ye Hong
Martin Raubal
16
1
0
11 Aug 2023
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
N. Durasov
Nik Dorndorf
Pascal Fua
VLM
16
5
0
21 Nov 2022
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step
  Inference
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference
N. Durasov
Nik Dorndorf
Hieu M. Le
Pascal Fua
UQCV
18
10
0
21 Nov 2022
Unsupervised confidence for LiDAR depth maps and applications
Unsupervised confidence for LiDAR depth maps and applications
Andrea Conti
Matteo Poggi
Filippo Aleotti
S. Mattoccia
3DV
14
12
0
06 Oct 2022
Instance-Aware Observer Network for Out-of-Distribution Object
  Segmentation
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
39
1
0
18 Jul 2022
SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain
  Adaptation
SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation
Tao Sun
Mattia Segu
Janis Postels
Yuxuan Wang
Luc Van Gool
Bernt Schiele
F. Tombari
F. I. F. Richard Yu
TTA
36
149
0
16 Jun 2022
STUN: Self-Teaching Uncertainty Estimation for Place Recognition
STUN: Self-Teaching Uncertainty Estimation for Place Recognition
Kaiwen Cai
Chris Xiaoxuan Lu
Xiaowei Huang
13
11
0
03 Mar 2022
GOSH: Task Scheduling Using Deep Surrogate Models in Fog Computing
  Environments
GOSH: Task Scheduling Using Deep Surrogate Models in Fog Computing Environments
Shreshth Tuli
G. Casale
N. Jennings
24
21
0
16 Dec 2021
Neighborhood Spatial Aggregation MC Dropout for Efficient
  Uncertainty-aware Semantic Segmentation in Point Clouds
Neighborhood Spatial Aggregation MC Dropout for Efficient Uncertainty-aware Semantic Segmentation in Point Clouds
Chao Qi
Jianqin Yin
UQCV
3DPC
BDL
20
2
0
05 Dec 2021
Deep Probability Estimation
Deep Probability Estimation
Sheng Liu
Aakash Kaku
Weicheng Zhu
M. Leibovich
S. Mohan
...
Haoxiang Huang
L. Zanna
N. Razavian
Jonathan Niles-Weed
C. Fernandez‐Granda
UQCV
OOD
28
14
0
21 Nov 2021
DEBOSH: Deep Bayesian Shape Optimization
DEBOSH: Deep Bayesian Shape Optimization
N. Durasov
Artem Lukoyanov
Jonathan Donier
Pascal Fua
UQCV
AI4CE
27
15
0
28 Sep 2021
Improving Uncertainty of Deep Learning-based Object Classification on
  Radar Spectra using Label Smoothing
Improving Uncertainty of Deep Learning-based Object Classification on Radar Spectra using Label Smoothing
Kanil Patel
William H. Beluch
K. Rambach
Michael Pfeiffer
B. Yang
UQCV
25
9
0
27 Sep 2021
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks
  with Sparse Gaussian Processes
Trust Your Robots! Predictive Uncertainty Estimation of Neural Networks with Sparse Gaussian Processes
Jongseo Lee
Jianxiang Feng
Matthias Humt
M. Müller
Rudolph Triebel
UQCV
46
21
0
20 Sep 2021
Triggering Failures: Out-Of-Distribution detection by learning from
  local adversarial attacks in Semantic Segmentation
Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
UQCV
16
48
0
03 Aug 2021
Robust Semantic Segmentation with Superpixel-Mix
Robust Semantic Segmentation with Superpixel-Mix
Gianni Franchi
Nacim Belkhir
Mai Lan Ha
Yufei Hu
Andrei Bursuc
V. Blanz
Angela Yao
UQCV
28
22
0
02 Aug 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,108
0
07 Jul 2021
Investigation of Uncertainty of Deep Learning-based Object
  Classification on Radar Spectra
Investigation of Uncertainty of Deep Learning-based Object Classification on Radar Spectra
Kanil Patel
William H. Beluch
K. Rambach
Adriana-Eliza Cozma
Michael Pfeiffer
Bin Yang
EDL
UQCV
14
5
0
01 Jun 2021
The Hidden Uncertainty in a Neural Networks Activations
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
César Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
19
22
0
05 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
221
0
20 Nov 2020
Perceiving Humans: from Monocular 3D Localization to Social Distancing
Perceiving Humans: from Monocular 3D Localization to Social Distancing
Lorenzo Bertoni
S. Kreiss
Alexandre Alahi
31
33
0
01 Sep 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
22
100
0
15 Jun 2020
Efficient Ensemble Model Generation for Uncertainty Estimation with
  Bayesian Approximation in Segmentation
Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation
Hong Joo Lee
S. T. Kim
Hakmin Lee
Nassir Navab
Yong Man Ro
UQCV
8
7
0
21 May 2020
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity
  as a Surrogate
Training-Free Uncertainty Estimation for Dense Regression: Sensitivity as a Surrogate
Lu Mi
Hao Wang
Yonglong Tian
Hao He
Nir Shavit
UQCV
21
29
0
28 Sep 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
261
9,134
0
06 Jun 2015
1