Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.09092
Cited By
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
24 August 2019
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data"
8 / 8 papers shown
Title
Mapping the Potential of Explainable AI for Fairness Along the AI Lifecycle
Luca Deck
Astrid Schomacker
Timo Speith
Jakob Schöffer
Lena Kästner
Niklas Kühl
28
4
0
29 Apr 2024
FEAMOE: Fair, Explainable and Adaptive Mixture of Experts
Shubham Sharma
Jette Henderson
Joydeep Ghosh
FedML
MoE
11
5
0
10 Oct 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
Fairness-Aware Online Meta-learning
Chengli Zhao
Feng Chen
B. Thuraisingham
FaML
23
34
0
21 Aug 2021
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
210
663
0
17 Feb 2018
Discriminatory Transfer
Chao Lan
Jun Huan
FaML
194
18
0
03 Jul 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,568
0
09 Mar 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
185
2,079
0
24 Oct 2016
1