Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1908.09375
Cited By
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
25 August 2019
T. Poggio
Andrzej Banburski
Q. Liao
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization"
20 / 20 papers shown
Title
Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Ashim Dahal
Saydul Akbar Murad
Nick Rahimi
36
0
0
27 Jan 2025
Dissecting a Small Artificial Neural Network
Xiguang Yang
Krish Arora
Michael Bachmann
32
0
0
03 Jan 2025
KAN: Kolmogorov-Arnold Networks
Ziming Liu
Yixuan Wang
Sachin Vaidya
Fabian Ruehle
James Halverson
Marin Soljacic
Thomas Y. Hou
Max Tegmark
80
473
0
30 Apr 2024
Surfing the modeling of PoS taggers in low-resource scenarios
M. Ferro
V. Darriba
F. J. Ribadas
J. G. Gil
14
0
0
04 Feb 2024
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
34
1
0
13 Sep 2023
Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits
Zhuokai Zhao
Takumi Matsuzawa
W. Irvine
Michael Maire
G. Kindlmann
35
2
0
31 May 2023
Implicit regularization in Heavy-ball momentum accelerated stochastic gradient descent
Avrajit Ghosh
He Lyu
Xitong Zhang
Rongrong Wang
45
20
0
02 Feb 2023
Deep Learning Meets Sparse Regularization: A Signal Processing Perspective
Rahul Parhi
Robert D. Nowak
28
25
0
23 Jan 2023
Biologically Plausible Training of Deep Neural Networks Using a Top-down Credit Assignment Network
Jian-Hui Chen
Cheng-Lin Liu
Zuoren Wang
21
0
0
01 Aug 2022
Neural Capacitance: A New Perspective of Neural Network Selection via Edge Dynamics
Chunheng Jiang
Tejaswini Pedapati
Pin-Yu Chen
Yizhou Sun
Jianxi Gao
21
2
0
11 Jan 2022
Federated Optimization of Smooth Loss Functions
Ali Jadbabaie
A. Makur
Devavrat Shah
FedML
19
7
0
06 Jan 2022
Towards the One Learning Algorithm Hypothesis: A System-theoretic Approach
Christos N. Mavridis
John S. Baras
18
1
0
04 Dec 2021
Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions
Tong Mao
Zhongjie Shi
Ding-Xuan Zhou
13
33
0
02 Jul 2021
Locality defeats the curse of dimensionality in convolutional teacher-student scenarios
Alessandro Favero
Francesco Cagnetta
M. Wyart
24
31
0
16 Jun 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
124
165
0
29 Jan 2021
Data-Driven Random Access Optimization in Multi-Cell IoT Networks with NOMA
Sami Khairy
Prasanna Balaprakash
L. Cai
H. Vincent Poor
19
6
0
02 Jan 2021
Cutting-edge 3D Medical Image Segmentation Methods in 2020: Are Happy Families All Alike?
Jun Ma
64
25
0
01 Jan 2021
Gradient-Based Empirical Risk Minimization using Local Polynomial Regression
Ali Jadbabaie
A. Makur
Devavrat Shah
22
6
0
04 Nov 2020
Autonomous Driving with Deep Learning: A Survey of State-of-Art Technologies
Yu Huang
Yue Chen
3DPC
46
82
0
10 Jun 2020
Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
Q. Liao
T. Poggio
213
255
0
13 Apr 2016
1