ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.00232
  4. Cited By
Convergence of Gaussian Process Regression with Estimated
  Hyper-parameters and Applications in Bayesian Inverse Problems
v1v2v3 (latest)

Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems

31 August 2019
A. Teckentrup
ArXiv (abs)PDFHTML

Papers citing "Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems"

31 / 31 papers shown
Title
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz
  Preconditioner
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
67
0
0
01 Aug 2024
Conditional Bayesian Quadrature
Conditional Bayesian Quadrature
Zonghao Chen
Masha Naslidnyk
Arthur Gretton
F. Briol
TPM
84
3
0
24 Jun 2024
On Safety in Safe Bayesian Optimization
On Safety in Safe Bayesian Optimization
Christian Fiedler
Johanna Menn
Lukas Kreisköther
Sebastian Trimpe
79
11
0
19 Mar 2024
PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial
  Surrogates
PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial Surrogates
Janina Schreiber
Pau Batlle
D. Wicaksono
Michael Hecht
79
0
0
12 Mar 2024
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDLUQCV
106
5
0
04 Mar 2024
A Bayesian approach with Gaussian priors to the inverse problem of
  source identification in elliptic PDEs
A Bayesian approach with Gaussian priors to the inverse problem of source identification in elliptic PDEs
Matteo Giordano
43
0
0
29 Feb 2024
Enhancing Gaussian Process Surrogates for Optimization and Posterior
  Approximation via Random Exploration
Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration
Hwanwoo Kim
D. Sanz-Alonso
79
3
0
30 Jan 2024
Dynamical System Identification, Model Selection and Model Uncertainty
  Quantification by Bayesian Inference
Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference
R. Niven
Laurent Cordier
Ali Mohammad-Djafari
Markus Abel
M. Quade
96
6
0
30 Jan 2024
Gaussian Process Regression under Computational and Epistemic
  Misspecification
Gaussian Process Regression under Computational and Epistemic Misspecification
D. Sanz-Alonso
Ruiyi Yang
60
1
0
14 Dec 2023
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
80
13
0
01 Nov 2023
Gaussian processes for Bayesian inverse problems associated with linear
  partial differential equations
Gaussian processes for Bayesian inverse problems associated with linear partial differential equations
Tianming Bai
A. Teckentrup
K. Zygalakis
68
13
0
17 Jul 2023
Stochastic PDE representation of random fields for large-scale Gaussian
  process regression and statistical finite element analysis
Stochastic PDE representation of random fields for large-scale Gaussian process regression and statistical finite element analysis
Kim Jie Koh
F. Cirak
AI4CE
60
12
0
23 May 2023
Bayesian Posterior Perturbation Analysis with Integral Probability
  Metrics
Bayesian Posterior Perturbation Analysis with Integral Probability Metrics
A. Garbuno-Iñigo
T. Helin
Franca Hoffmann
Bamdad Hosseini
123
10
0
02 Mar 2023
Introduction To Gaussian Process Regression In Bayesian Inverse
  Problems, With New ResultsOn Experimental Design For Weighted Error Measures
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures
T. Helin
Andrew M. Stuart
A. Teckentrup
K. Zygalakis
62
5
0
09 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
127
15
0
27 Jan 2023
Antenna Array Calibration Via Gaussian Process Models
Antenna Array Calibration Via Gaussian Process Models
Sergey S. Tambovskiy
Gábor Fodor
H. Tullberg
24
1
0
16 Jan 2023
Residual-based error correction for neural operator accelerated
  infinite-dimensional Bayesian inverse problems
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
67
26
0
06 Oct 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in
  Noisy Bayesian Optimization
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
58
4
0
10 May 2022
Maximum Likelihood Estimation in Gaussian Process Regression is
  Ill-Posed
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
Toni Karvonen
Chris J. Oates
GP
66
26
0
17 Mar 2022
On Average-Case Error Bounds for Kernel-Based Bayesian Quadrature
On Average-Case Error Bounds for Kernel-Based Bayesian Quadrature
Xu Cai
Chi Thanh Lam
Jonathan Scarlett
55
3
0
22 Feb 2022
Error analysis for a statistical finite element method
Error analysis for a statistical finite element method
Toni Karvonen
F. Cirak
Mark Girolami
15
4
0
19 Jan 2022
Estimation of the Scale Parameter for a Misspecified Gaussian Process
  Model
Estimation of the Scale Parameter for a Misspecified Gaussian Process Model
Toni Karvonen
50
4
0
06 Oct 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
99
55
0
20 Aug 2021
Measuring the robustness of Gaussian processes to kernel choice
Measuring the robustness of Gaussian processes to kernel choice
William T. Stephenson
S. Ghosh
Tin D. Nguyen
Mikhail Yurochkin
Sameer K. Deshpande
Tamara Broderick
GP
35
11
0
11 Jun 2021
A Fast and Calibrated Computer Model Emulator: An Empirical Bayes
  Approach
A Fast and Calibrated Computer Model Emulator: An Empirical Bayes Approach
Vojtech Kejzlar
Mookyong Son
Shrijita Bhattacharya
T. Maiti
18
6
0
11 Aug 2020
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Harrison Zhu
Xing Liu
Ruya Kang
Zhichao Shen
Seth Flaxman
F. Briol
TPM
42
5
0
09 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
71
35
0
09 Jun 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical
  Parameter Estimation
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
111
31
0
22 May 2020
Regret Bounds for Noise-Free Kernel-Based Bandits
Regret Bounds for Noise-Free Kernel-Based Bandits
Sattar Vakili
67
3
0
12 Feb 2020
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
104
39
0
29 Jan 2020
Convergence Guarantees for Gaussian Process Means With Misspecified
  Likelihoods and Smoothness
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
82
56
0
29 Jan 2020
1