Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.00232
Cited By
v1
v2
v3 (latest)
Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems
31 August 2019
A. Teckentrup
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Convergence of Gaussian Process Regression with Estimated Hyper-parameters and Applications in Bayesian Inverse Problems"
31 / 31 papers shown
Title
Gaussian Processes Sampling with Sparse Grids under Additive Schwarz Preconditioner
Haoyuan Chen
Rui Tuo
67
0
0
01 Aug 2024
Conditional Bayesian Quadrature
Zonghao Chen
Masha Naslidnyk
Arthur Gretton
F. Briol
TPM
84
3
0
24 Jun 2024
On Safety in Safe Bayesian Optimization
Christian Fiedler
Johanna Menn
Lukas Kreisköther
Sebastian Trimpe
79
11
0
19 Mar 2024
PMBO: Enhancing Black-Box Optimization through Multivariate Polynomial Surrogates
Janina Schreiber
Pau Batlle
D. Wicaksono
Michael Hecht
79
0
0
12 Mar 2024
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
106
5
0
04 Mar 2024
A Bayesian approach with Gaussian priors to the inverse problem of source identification in elliptic PDEs
Matteo Giordano
43
0
0
29 Feb 2024
Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration
Hwanwoo Kim
D. Sanz-Alonso
79
3
0
30 Jan 2024
Dynamical System Identification, Model Selection and Model Uncertainty Quantification by Bayesian Inference
R. Niven
Laurent Cordier
Ali Mohammad-Djafari
Markus Abel
M. Quade
96
6
0
30 Jan 2024
Gaussian Process Regression under Computational and Epistemic Misspecification
D. Sanz-Alonso
Ruiyi Yang
60
1
0
14 Dec 2023
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
82
13
0
01 Nov 2023
Gaussian processes for Bayesian inverse problems associated with linear partial differential equations
Tianming Bai
A. Teckentrup
K. Zygalakis
68
13
0
17 Jul 2023
Stochastic PDE representation of random fields for large-scale Gaussian process regression and statistical finite element analysis
Kim Jie Koh
F. Cirak
AI4CE
60
12
0
23 May 2023
Bayesian Posterior Perturbation Analysis with Integral Probability Metrics
A. Garbuno-Iñigo
T. Helin
Franca Hoffmann
Bamdad Hosseini
123
10
0
02 Mar 2023
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures
T. Helin
Andrew M. Stuart
A. Teckentrup
K. Zygalakis
62
5
0
09 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
127
15
0
27 Jan 2023
Antenna Array Calibration Via Gaussian Process Models
Sergey S. Tambovskiy
Gábor Fodor
H. Tullberg
24
1
0
16 Jan 2023
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
67
26
0
06 Oct 2022
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
58
4
0
10 May 2022
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
Toni Karvonen
Chris J. Oates
GP
73
26
0
17 Mar 2022
On Average-Case Error Bounds for Kernel-Based Bayesian Quadrature
Xu Cai
Chi Thanh Lam
Jonathan Scarlett
57
3
0
22 Feb 2022
Error analysis for a statistical finite element method
Toni Karvonen
F. Cirak
Mark Girolami
17
4
0
19 Jan 2022
Estimation of the Scale Parameter for a Misspecified Gaussian Process Model
Toni Karvonen
50
4
0
06 Oct 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
99
55
0
20 Aug 2021
Measuring the robustness of Gaussian processes to kernel choice
William T. Stephenson
S. Ghosh
Tin D. Nguyen
Mikhail Yurochkin
Sameer K. Deshpande
Tamara Broderick
GP
35
11
0
11 Jun 2021
A Fast and Calibrated Computer Model Emulator: An Empirical Bayes Approach
Vojtech Kejzlar
Mookyong Son
Shrijita Bhattacharya
T. Maiti
25
6
0
11 Aug 2020
Bayesian Probabilistic Numerical Integration with Tree-Based Models
Harrison Zhu
Xing Liu
Ruya Kang
Zhichao Shen
Seth Flaxman
F. Briol
TPM
42
5
0
09 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
71
35
0
09 Jun 2020
Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation
Yifan Chen
H. Owhadi
Andrew M. Stuart
111
31
0
22 May 2020
Regret Bounds for Noise-Free Kernel-Based Bandits
Sattar Vakili
67
3
0
12 Feb 2020
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
104
39
0
29 Jan 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
82
56
0
29 Jan 2020
1