ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.10155
  4. Cited By
Verified Uncertainty Calibration

Verified Uncertainty Calibration

23 September 2019
Ananya Kumar
Percy Liang
Tengyu Ma
ArXivPDFHTML

Papers citing "Verified Uncertainty Calibration"

42 / 242 papers shown
Title
Improving model calibration with accuracy versus uncertainty
  optimization
Improving model calibration with accuracy versus uncertainty optimization
R. Krishnan
Omesh Tickoo
UQCV
188
157
0
14 Dec 2020
Stronger Calibration Lower Bounds via Sidestepping
Stronger Calibration Lower Bounds via Sidestepping
Mingda Qiao
Gregory Valiant
42
18
0
07 Dec 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAML
UQCV
EDL
24
222
0
20 Nov 2020
Right Decisions from Wrong Predictions: A Mechanism Design Alternative
  to Individual Calibration
Right Decisions from Wrong Predictions: A Mechanism Design Alternative to Individual Calibration
Shengjia Zhao
Stefano Ermon
6
8
0
15 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
37
1,877
0
12 Nov 2020
PAC Confidence Predictions for Deep Neural Network Classifiers
PAC Confidence Predictions for Deep Neural Network Classifiers
Sangdon Park
Shuo Li
Insup Lee
Osbert Bastani
UQCV
8
25
0
02 Nov 2020
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data
  and Bayesian Inference
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
Disi Ji
Padhraic Smyth
M. Steyvers
34
44
0
19 Oct 2020
Learning Calibrated Uncertainties for Domain Shift: A Distributionally
  Robust Learning Approach
Learning Calibrated Uncertainties for Domain Shift: A Distributionally Robust Learning Approach
Haoxu Wang
Zhiding Yu
Yisong Yue
Anima Anandkumar
Anqi Liu
Junchi Yan
OOD
UQCV
11
4
0
08 Oct 2020
Why have a Unified Predictive Uncertainty? Disentangling it using Deep
  Split Ensembles
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PER
UQCV
BDL
UD
16
7
0
25 Sep 2020
Probabilistic Machine Learning for Healthcare
Probabilistic Machine Learning for Healthcare
Irene Y. Chen
Shalmali Joshi
Marzyeh Ghassemi
Rajesh Ranganath
OOD
6
51
0
23 Sep 2020
MoPro: Webly Supervised Learning with Momentum Prototypes
MoPro: Webly Supervised Learning with Momentum Prototypes
Junnan Li
Caiming Xiong
S. Hoi
18
94
0
17 Sep 2020
Adaptive Label Smoothing
Adaptive Label Smoothing
Ujwal Krothapalli
A. Lynn Abbott
23
9
0
14 Sep 2020
Measuring Massive Multitask Language Understanding
Measuring Massive Multitask Language Understanding
Dan Hendrycks
Collin Burns
Steven Basart
Andy Zou
Mantas Mazeika
D. Song
Jacob Steinhardt
ELM
RALM
8
3,838
0
07 Sep 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep
  Learning in Adversarial and Out-of-Distribution Settings
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
11
2
0
03 Sep 2020
Privacy Preserving Recalibration under Domain Shift
Privacy Preserving Recalibration under Domain Shift
Rachel Luo
Shengjia Zhao
Jiaming Song
Jonathan Kuck
Stefano Ermon
Silvio Savarese
6
3
0
21 Aug 2020
Evaluating probabilistic classifiers: Reliability diagrams and score
  decompositions revisited
Evaluating probabilistic classifiers: Reliability diagrams and score decompositions revisited
Timo Dimitriadis
T. Gneiting
Alexander I. Jordan
17
60
0
07 Aug 2020
Transferable Calibration with Lower Bias and Variance in Domain
  Adaptation
Transferable Calibration with Lower Bias and Variance in Domain Adaptation
Ximei Wang
Mingsheng Long
Jianmin Wang
Michael I. Jordan
9
51
0
16 Jul 2020
Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions
  in Medical Domain
Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions in Medical Domain
Takahiro Mimori
Keiko Sasada
H. Matsui
Issei Sato
UQCV
17
6
0
03 Jul 2020
Confidence-Aware Learning for Deep Neural Networks
Confidence-Aware Learning for Deep Neural Networks
J. Moon
Jihyo Kim
Younghak Shin
Sangheum Hwang
UQCV
18
143
0
03 Jul 2020
Class-Similarity Based Label Smoothing for Confidence Calibration
Class-Similarity Based Label Smoothing for Confidence Calibration
Chihuang Liu
J. JáJá
UQCV
6
1
0
24 Jun 2020
Multi-Class Uncertainty Calibration via Mutual Information
  Maximization-based Binning
Multi-Class Uncertainty Calibration via Mutual Information Maximization-based Binning
Kanil Patel
William H. Beluch
Binh Yang
Michael Pfeiffer
Dan Zhang
UQCV
6
34
0
23 Jun 2020
Post-hoc Calibration of Neural Networks by g-Layers
Post-hoc Calibration of Neural Networks by g-Layers
Amir M. Rahimi
Thomas Mensink
Kartik Gupta
Thalaiyasingam Ajanthan
C. Sminchisescu
Richard I. Hartley
12
5
0
23 Jun 2020
Calibration of Neural Networks using Splines
Calibration of Neural Networks using Splines
Kartik Gupta
Amir M. Rahimi
Thalaiyasingam Ajanthan
Thomas Mensink
C. Sminchisescu
Richard I. Hartley
10
106
0
23 Jun 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
A. Podkopaev
Aaditya Ramdas
UQCV
23
79
0
18 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
6
436
0
17 Jun 2020
Calibrating Deep Neural Network Classifiers on Out-of-Distribution
  Datasets
Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets
Zhihui Shao
Jianyi Yang
Shaolei Ren
OODD
27
11
0
16 Jun 2020
Dynamic Feature Acquisition with Arbitrary Conditional Flows
Dynamic Feature Acquisition with Arbitrary Conditional Flows
Yang Li
Junier B. Oliva
TPM
6
6
0
13 Jun 2020
Classification with Valid and Adaptive Coverage
Classification with Valid and Adaptive Coverage
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
6
300
0
03 Jun 2020
Probabilistic Object Classification using CNN ML-MAP layers
Probabilistic Object Classification using CNN ML-MAP layers
Gledson Melotti
C. Premebida
Jordan J. Bird
Diego Resende Faria
Nuno Gonçalves
6
4
0
29 May 2020
Posterior Calibrated Training on Sentence Classification Tasks
Posterior Calibrated Training on Sentence Classification Tasks
Taehee Jung
Dongyeop Kang
Hua Cheng
L. Mentch
Thomas Schaaf
UQCV
9
12
0
29 Apr 2020
A Unified View of Label Shift Estimation
A Unified View of Label Shift Estimation
Saurabh Garg
Yifan Wu
Sivaraman Balakrishnan
Zachary Chase Lipton
8
138
0
17 Mar 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
11
220
0
16 Mar 2020
Intra Order-preserving Functions for Calibration of Multi-Class Neural
  Networks
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Amir M. Rahimi
Amirreza Shaban
Ching-An Cheng
Richard I. Hartley
Byron Boots
UQCV
6
68
0
15 Mar 2020
Quantile Regularization: Towards Implicit Calibration of Regression
  Models
Quantile Regularization: Towards Implicit Calibration of Regression Models
Saiteja Utpala
Piyush Rai
UQCV
4
7
0
28 Feb 2020
On the Role of Dataset Quality and Heterogeneity in Model Confidence
On the Role of Dataset Quality and Heterogeneity in Model Confidence
Yuan Zhao
Jiasi Chen
Samet Oymak
14
12
0
23 Feb 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip H. S. Torr
P. Dokania
UQCV
16
444
0
21 Feb 2020
Active Bayesian Assessment for Black-Box Classifiers
Active Bayesian Assessment for Black-Box Classifiers
Disi Ji
Robert L Logan IV
Padhraic Smyth
M. Steyvers
UQCV
6
15
0
16 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
17
314
0
15 Feb 2020
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
On the Validity of Bayesian Neural Networks for Uncertainty Estimation
John Mitros
Brian Mac Namee
UQCV
BDL
8
29
0
03 Dec 2019
Beyond temperature scaling: Obtaining well-calibrated multiclass
  probabilities with Dirichlet calibration
Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull
Miquel Perelló Nieto
Markus Kängsepp
Telmo de Menezes e Silva Filho
Hao Song
Peter A. Flach
UQCV
14
367
0
28 Oct 2019
Calibration tests in multi-class classification: A unifying framework
Calibration tests in multi-class classification: A unifying framework
David Widmann
Fredrik Lindsten
Dave Zachariah
13
92
0
24 Oct 2019
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
36
1,417
0
16 Jul 2019
Previous
12345