ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.10155
  4. Cited By
Verified Uncertainty Calibration
v1v2 (latest)

Verified Uncertainty Calibration

Neural Information Processing Systems (NeurIPS), 2019
23 September 2019
Ananya Kumar
Abigail Z. Jacobs
Tengyu Ma
ArXiv (abs)PDFHTML

Papers citing "Verified Uncertainty Calibration"

50 / 265 papers shown
Title
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
191
30
0
25 Aug 2022
Pushing the limits of fairness impossibility: Who's the fairest of them
  all?
Pushing the limits of fairness impossibility: Who's the fairest of them all?Neural Information Processing Systems (NeurIPS), 2022
Brian Hsu
Rahul Mazumder
Preetam Nandy
Kinjal Basu
96
13
0
24 Aug 2022
Adaptive Temperature Scaling for Robust Calibration of Deep Neural
  Networks
Adaptive Temperature Scaling for Robust Calibration of Deep Neural Networks
Sérgio A. Balanya
Juan Maroñas
Daniel Ramos
OOD
213
28
0
31 Jul 2022
Calibrated ensembles can mitigate accuracy tradeoffs under distribution
  shift
Calibrated ensembles can mitigate accuracy tradeoffs under distribution shiftConference on Uncertainty in Artificial Intelligence (UAI), 2022
Ananya Kumar
Tengyu Ma
Abigail Z. Jacobs
Aditi Raghunathan
UQCVOODDOOD
176
43
0
18 Jul 2022
Parametric and Multivariate Uncertainty Calibration for Regression and
  Object Detection
Parametric and Multivariate Uncertainty Calibration for Regression and Object Detection
Fabian Küppers
Jonas Schneider
Anselm Haselhoff
UQCV
197
16
0
04 Jul 2022
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature
  Entropy State
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy StatebioRxiv (bioRxiv), 2022
Xinshao Wang
Yang Hua
Elyor Kodirov
S. Mukherjee
David Clifton
N. Robertson
317
6
0
30 Jun 2022
A Geometric Method for Improved Uncertainty Estimation in Real-time
A Geometric Method for Improved Uncertainty Estimation in Real-timeConference on Uncertainty in Artificial Intelligence (UAI), 2022
Gabriella Chouraqui
L. Cohen
Gil Einziger
Liel Leman
119
0
0
23 Jun 2022
Evaluating Aleatoric Uncertainty via Conditional Generative Models
Evaluating Aleatoric Uncertainty via Conditional Generative Models
Ziyi Huang
Henry Lam
Haofeng Zhang
PERUD
133
6
0
09 Jun 2022
On Calibration of Graph Neural Networks for Node Classification
On Calibration of Graph Neural Networks for Node ClassificationIEEE International Joint Conference on Neural Network (IJCNN), 2022
Tong Liu
Yushan Liu
Marcel Hildebrandt
Mitchell Joblin
Hang Li
Volker Tresp
169
12
0
03 Jun 2022
Masked Bayesian Neural Networks : Computation and Optimality
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Yongdai Kim
TPM
238
1
0
02 Jun 2022
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object
  Detection
LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection
Matthew A. Pitropov
Chengjie Huang
Vahdat Abdelzad
Krzysztof Czarnecki
Steven Waslander
3DPC
83
3
0
01 Jun 2022
What is Your Metric Telling You? Evaluating Classifier Calibration under
  Context-Specific Definitions of Reliability
What is Your Metric Telling You? Evaluating Classifier Calibration under Context-Specific Definitions of Reliability
John Kirchenbauer
Jacob Oaks
Eric Heim
UQCV
225
4
0
23 May 2022
Calibration Matters: Tackling Maximization Bias in Large-scale
  Advertising Recommendation Systems
Calibration Matters: Tackling Maximization Bias in Large-scale Advertising Recommendation SystemsInternational Conference on Learning Representations (ICLR), 2022
Yewen Fan
Nian Si
Kun Zhang
235
5
0
19 May 2022
Metrics of calibration for probabilistic predictions
Metrics of calibration for probabilistic predictionsJournal of machine learning research (JMLR), 2022
Imanol Arrieta-Ibarra
Paman Gujral
Jonathan Tannen
M. Tygert
Cherie Xu
154
31
0
19 May 2022
Posterior Probability Matters: Doubly-Adaptive Calibration for Neural
  Predictions in Online Advertising
Posterior Probability Matters: Doubly-Adaptive Calibration for Neural Predictions in Online AdvertisingAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), 2022
Penghui Wei
Weimin Zhang
Ruijie Hou
Jinquan Liu
Shaoguo Liu
Liang Wang
Bo Zheng
135
11
0
15 May 2022
Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
Training Uncertainty-Aware Classifiers with Conformalized Deep LearningNeural Information Processing Systems (NeurIPS), 2022
Bat-Sheva Einbinder
Yaniv Romano
Matteo Sesia
Yanfei Zhou
UQCV
248
65
0
12 May 2022
Tailored Uncertainty Estimation for Deep Learning Systems
Tailored Uncertainty Estimation for Deep Learning Systems
Joachim Sicking
Maram Akila
Jan David Schneider
Fabian Hüger
Peter Schlicht
Tim Wirtz
Stefan Wrobel
UQCV
129
2
0
29 Apr 2022
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved
  Neural Network Calibration
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network CalibrationComputer Vision and Pattern Recognition (CVPR), 2022
R. Hebbalaguppe
Jatin Prakash
Neelabh Madan
Chetan Arora
UQCV
157
52
0
25 Mar 2022
Model-Agnostic Multi-Agent Perception Framework
Model-Agnostic Multi-Agent Perception FrameworkIEEE International Conference on Robotics and Automation (ICRA), 2022
Runsheng Xu
Weizhe (Wesley) Chen
Hao Xiang
Lantao Liu
Jiaqi Ma
FedML
303
77
0
24 Mar 2022
Confidence Calibration for Intent Detection via Hyperspherical Space and
  Rebalanced Accuracy-Uncertainty Loss
Confidence Calibration for Intent Detection via Hyperspherical Space and Rebalanced Accuracy-Uncertainty LossAAAI Conference on Artificial Intelligence (AAAI), 2022
Yantao Gong
Cao Liu
Fan Yang
Xunliang Cai
Guanglu Wan
Jiansong Chen
Weipeng Zhang
Houfeng Wang
UQCV
148
4
0
17 Mar 2022
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of ClassifiersMachine-mediated learning (ML), 2022
Markus Kängsepp
Kaspar Valk
Meelis Kull
229
3
0
16 Mar 2022
Better Uncertainty Calibration via Proper Scores for Classification and
  Beyond
Better Uncertainty Calibration via Proper Scores for Classification and BeyondNeural Information Processing Systems (NeurIPS), 2022
Sebastian G. Gruber
Florian Buettner
UQCV
187
61
0
15 Mar 2022
T-Cal: An optimal test for the calibration of predictive models
T-Cal: An optimal test for the calibration of predictive modelsJournal of machine learning research (JMLR), 2022
Donghwan Lee
Xinmeng Huang
Hamed Hassani
Guang Cheng
420
23
0
03 Mar 2022
Confidence Calibration for Object Detection and Segmentation
Confidence Calibration for Object Detection and Segmentation
Fabian Küppers
Anselm Haselhoff
Jan Kronenberger
Jonas Schneider
UQCV
170
7
0
25 Feb 2022
Fourier-Based Augmentations for Improved Robustness and Uncertainty
  Calibration
Fourier-Based Augmentations for Improved Robustness and Uncertainty Calibration
Ryan Soklaski
Michael Yee
Theodoros Tsiligkaridis
AAML
190
17
0
24 Feb 2022
Taking a Step Back with KCal: Multi-Class Kernel-Based Calibration for
  Deep Neural Networks
Taking a Step Back with KCal: Multi-Class Kernel-Based Calibration for Deep Neural NetworksInternational Conference on Learning Representations (ICLR), 2022
Zhen Lin
Shubhendu Trivedi
Jimeng Sun
143
7
0
15 Feb 2022
Conformal Prediction Sets with Limited False Positives
Conformal Prediction Sets with Limited False PositivesInternational Conference on Machine Learning (ICML), 2022
Adam Fisch
Tal Schuster
Tommi Jaakkola
Regina Barzilay
133
24
0
15 Feb 2022
Heterogeneous Calibration: A post-hoc model-agnostic framework for
  improved generalization
Heterogeneous Calibration: A post-hoc model-agnostic framework for improved generalization
D. Durfee
Aman Gupta
Kinjal Basu
UQCV
89
2
0
10 Feb 2022
Hidden Heterogeneity: When to Choose Similarity-Based Calibration
Hidden Heterogeneity: When to Choose Similarity-Based Calibration
K. Wagstaff
Thomas G. Dietterich
183
1
0
03 Feb 2022
On the relationship between calibrated predictors and unbiased volume
  estimation
On the relationship between calibrated predictors and unbiased volume estimationInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021
Teodora Popordanoska
J. Bertels
Dirk Vandermeulen
F. Maes
Matthew B. Blaschko
167
15
0
23 Dec 2021
Classifier Calibration: A survey on how to assess and improve predicted
  class probabilities
Classifier Calibration: A survey on how to assess and improve predicted class probabilitiesMachine-mediated learning (ML), 2021
Telmo de Menezes e Silva Filho
Hao Song
Miquel Perelló Nieto
Raúl Santos-Rodríguez
Meelis Kull
Peter A. Flach
309
118
0
20 Dec 2021
Benchmarking Uncertainty Quantification on Biosignal Classification
  Tasks under Dataset Shift
Benchmarking Uncertainty Quantification on Biosignal Classification Tasks under Dataset Shift
Tong Xia
Jing Han
Cecilia Mascolo
OOD
183
12
0
16 Dec 2021
The Box Size Confidence Bias Harms Your Object Detector
The Box Size Confidence Bias Harms Your Object Detector
Johannes Gilg
Torben Teepe
Fabian Herzog
Gerhard Rigoll
ObjD
139
6
0
03 Dec 2021
TransMix: Attend to Mix for Vision Transformers
TransMix: Attend to Mix for Vision Transformers
Jieneng Chen
Shuyang Sun
Ju He
Juil Sock
Alan Yuille
S. Bai
ViT
319
120
0
18 Nov 2021
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
  Certified Robustness
SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Sejun Park
Minkyu Kim
Heung-Chang Lee
Do-Guk Kim
Jinwoo Shin
AAML
148
64
0
17 Nov 2021
Scaffolding Sets
Scaffolding Sets
M. Burhanpurkar
Zhun Deng
Cynthia Dwork
Linjun Zhang
178
9
0
04 Nov 2021
Exploring Covariate and Concept Shift for Detection and Calibration of
  Out-of-Distribution Data
Exploring Covariate and Concept Shift for Detection and Calibration of Out-of-Distribution Data
Junjiao Tian
Yen-Change Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
226
8
0
28 Oct 2021
Reliable Probability Intervals For Classification Using Inductive Venn
  Predictors Based on Distance Learning
Reliable Probability Intervals For Classification Using Inductive Venn Predictors Based on Distance Learning
Dimitrios Boursinos
X. Koutsoukos
98
1
0
07 Oct 2021
Assurance Monitoring of Learning Enabled Cyber-Physical Systems Using
  Inductive Conformal Prediction based on Distance Learning
Assurance Monitoring of Learning Enabled Cyber-Physical Systems Using Inductive Conformal Prediction based on Distance Learning
Dimitrios Boursinos
X. Koutsoukos
174
12
0
07 Oct 2021
Post-hoc Models for Performance Estimation of Machine Learning Inference
Post-hoc Models for Performance Estimation of Machine Learning Inference
Xuechen Zhang
Samet Oymak
Jiasi Chen
UQCV
133
6
0
06 Oct 2021
Combining Human Predictions with Model Probabilities via Confusion
  Matrices and Calibration
Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration
Gavin Kerrigan
Padhraic Smyth
M. Steyvers
119
60
0
29 Sep 2021
Unsolved Problems in ML Safety
Unsolved Problems in ML Safety
Dan Hendrycks
Nicholas Carlini
John Schulman
Jacob Steinhardt
567
335
0
28 Sep 2021
When in Doubt: Improving Classification Performance with Alternating
  Normalization
When in Doubt: Improving Classification Performance with Alternating Normalization
Menglin Jia
A. Reiter
Ser-Nam Lim
Yoav Artzi
Claire Cardie
125
13
0
28 Sep 2021
Making Heads and Tails of Models with Marginal Calibration for Sparse
  Tagsets
Making Heads and Tails of Models with Marginal Calibration for Sparse Tagsets
Michael Kranzlein
Nelson F. Liu
Nathan Schneider
109
3
0
15 Sep 2021
DROMO: Distributionally Robust Offline Model-based Policy Optimization
DROMO: Distributionally Robust Offline Model-based Policy Optimization
Ruizhen Liu
Dazhi Zhong
Zhi-Cong Chen
OffRL
123
3
0
15 Sep 2021
Soft Calibration Objectives for Neural Networks
Soft Calibration Objectives for Neural NetworksNeural Information Processing Systems (NeurIPS), 2021
A. Karandikar
Nicholas Cain
Dustin Tran
Balaji Lakshminarayanan
Jonathon Shlens
Michael C. Mozer
Becca Roelofs
UQCV
358
103
0
30 Jul 2021
Top-label calibration and multiclass-to-binary reductions
Top-label calibration and multiclass-to-binary reductionsInternational Conference on Learning Representations (ICLR), 2021
Chirag Gupta
Aaditya Ramdas
240
49
0
18 Jul 2021
Towards Robust Active Feature Acquisition
Towards Robust Active Feature Acquisition
Yang Li
Siyuan Shan
Qin Liu
Junier B. Oliva
TPM
112
5
0
09 Jul 2021
Assessing Generalization of SGD via Disagreement
Assessing Generalization of SGD via DisagreementInternational Conference on Learning Representations (ICLR), 2021
Yiding Jiang
Vaishnavh Nagarajan
Christina Baek
J. Zico Kolter
260
129
0
25 Jun 2021
PAC Prediction Sets Under Covariate Shift
PAC Prediction Sets Under Covariate ShiftInternational Conference on Learning Representations (ICLR), 2021
Sangdon Park
Guang Cheng
Insup Lee
Osbert Bastani
233
48
0
17 Jun 2021
Previous
123456
Next