Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1909.11522
Cited By
Neural networks are a priori biased towards Boolean functions with low entropy
25 September 2019
Chris Mingard
Joar Skalse
Guillermo Valle Pérez
David Martínez-Rubio
Vladimir Mikulik
A. Louis
FAtt
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural networks are a priori biased towards Boolean functions with low entropy"
8 / 8 papers shown
Title
Neural Redshift: Random Networks are not Random Functions
Damien Teney
A. Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad
103
18
0
04 Mar 2024
Simplicity bias, algorithmic probability, and the random logistic map
B. Hamzi
K. Dingle
23
3
0
31 Dec 2023
Points of non-linearity of functions generated by random neural networks
David Holmes
16
0
0
19 Apr 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
21
16
0
13 Apr 2023
Simplicity Bias in Transformers and their Ability to Learn Sparse Boolean Functions
S. Bhattamishra
Arkil Patel
Varun Kanade
Phil Blunsom
22
44
0
22 Nov 2022
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
33
66
0
19 Jan 2022
Embedding Principle: a hierarchical structure of loss landscape of deep neural networks
Yaoyu Zhang
Yuqing Li
Zhongwang Zhang
Tao Luo
Z. Xu
29
21
0
30 Nov 2021
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,746
0
26 Sep 2016
1