ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.11385
  4. Cited By
Calibration tests in multi-class classification: A unifying framework

Calibration tests in multi-class classification: A unifying framework

24 October 2019
David Widmann
Fredrik Lindsten
Dave Zachariah
ArXivPDFHTML

Papers citing "Calibration tests in multi-class classification: A unifying framework"

23 / 23 papers shown
Title
Optimizing Estimators of Squared Calibration Errors in Classification
Optimizing Estimators of Squared Calibration Errors in Classification
Sebastian G. Gruber
Francis Bach
71
1
0
24 Feb 2025
Confidence Calibration of Classifiers with Many Classes
Confidence Calibration of Classifiers with Many Classes
Adrien LeCoz
Stéphane Herbin
Faouzi Adjed
UQCV
37
1
0
05 Nov 2024
Geospatial Disparities: A Case Study on Real Estate Prices in Paris
Geospatial Disparities: A Case Study on Real Estate Prices in Paris
Agathe Fernandes Machado
Franccois Hu
Philipp Ratz
E. Gallic
Arthur Charpentier
30
1
0
29 Jan 2024
Calibration by Distribution Matching: Trainable Kernel Calibration
  Metrics
Calibration by Distribution Matching: Trainable Kernel Calibration Metrics
Charles Marx
Sofian Zalouk
Stefano Ermon
27
6
0
31 Oct 2023
Towards Fair and Calibrated Models
Towards Fair and Calibrated Models
Anand Brahmbhatt
Vipul Rathore
Mausam
Parag Singla
FaML
16
2
0
16 Oct 2023
A Theoretical and Practical Framework for Evaluating Uncertainty
  Calibration in Object Detection
A Theoretical and Practical Framework for Evaluating Uncertainty Calibration in Object Detection
Pedro Conde
Rui L. Lopes
C. Premebida
UQCV
13
1
0
01 Sep 2023
Approaching Test Time Augmentation in the Context of Uncertainty
  Calibration for Deep Neural Networks
Approaching Test Time Augmentation in the Context of Uncertainty Calibration for Deep Neural Networks
Pedro Conde
T. Barros
Rui L. Lopes
C. Premebida
U. J. Nunes
UQCV
19
7
0
11 Apr 2023
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for
  Classifying Common Mental Illnesses on Social Media Posts
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for Classifying Common Mental Illnesses on Social Media Posts
Pratinav Seth
Mihir Agarwal
AI4MH
16
1
0
10 Apr 2023
Stop Measuring Calibration When Humans Disagree
Stop Measuring Calibration When Humans Disagree
Joris Baan
Wilker Aziz
Barbara Plank
Raquel Fernández
24
53
0
28 Oct 2022
Useful Confidence Measures: Beyond the Max Score
Useful Confidence Measures: Beyond the Max Score
G. Yona
Amir Feder
Itay Laish
81
5
0
25 Oct 2022
Calibration tests beyond classification
Calibration tests beyond classification
David Widmann
Fredrik Lindsten
Dave Zachariah
25
17
0
21 Oct 2022
Calibrated Selective Classification
Calibrated Selective Classification
Adam Fisch
Tommi Jaakkola
Regina Barzilay
21
16
0
25 Aug 2022
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved
  Neural Network Calibration
A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration
R. Hebbalaguppe
Jatin Prakash
Neelabh Madan
Chetan Arora
UQCV
17
42
0
25 Mar 2022
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
On the Usefulness of the Fit-on-the-Test View on Evaluating Calibration of Classifiers
Markus Kängsepp
Kaspar Valk
Meelis Kull
27
3
0
16 Mar 2022
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class
  Calibration
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration
Shengjia Zhao
Michael P. Kim
Roshni Sahoo
Tengyu Ma
Stefano Ermon
17
55
0
12 Jul 2021
Meta-Calibration: Learning of Model Calibration Using Differentiable
  Expected Calibration Error
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error
Ondrej Bohdal
Yongxin Yang
Timothy M. Hospedales
UQCV
OOD
37
21
0
17 Jun 2021
Distribution-free calibration guarantees for histogram binning without
  sample splitting
Distribution-free calibration guarantees for histogram binning without sample splitting
Chirag Gupta
Aaditya Ramdas
11
37
0
10 May 2021
Local Calibration: Metrics and Recalibration
Local Calibration: Metrics and Recalibration
Rachel Luo
Aadyot Bhatnagar
Yu Bai
Shengjia Zhao
Huan Wang
Caiming Xiong
Silvio Savarese
Stefano Ermon
Edward Schmerling
Marco Pavone
16
14
0
22 Feb 2021
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
26
63
0
19 Oct 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDL
UQCV
24
18
0
20 Jun 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
A. Podkopaev
Aaditya Ramdas
UQCV
23
79
0
18 Jun 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip H. S. Torr
P. Dokania
UQCV
32
444
0
21 Feb 2020
Verified Uncertainty Calibration
Verified Uncertainty Calibration
Ananya Kumar
Percy Liang
Tengyu Ma
22
345
0
23 Sep 2019
1