Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1910.12430
Cited By
Differentiable Convex Optimization Layers
28 October 2019
Akshay Agrawal
Brandon Amos
Shane T. Barratt
Stephen P. Boyd
Steven Diamond
Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentiable Convex Optimization Layers"
50 / 102 papers shown
Title
A Solver-Free Framework for Scalable Learning in Neural ILP Architectures
Yatin Nandwani
Rishabh Ranjan
Mausam
Parag Singla
25
7
0
17 Oct 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
33
3
0
05 Aug 2022
Theseus: A Library for Differentiable Nonlinear Optimization
Luis Pineda
Taosha Fan
Maurizio Monge
S. Venkataraman
Paloma Sodhi
...
Austin S. Wang
Stuart Anderson
Jing Dong
Brandon Amos
Mustafa Mukadam
24
76
0
19 Jul 2022
Learning differentiable solvers for systems with hard constraints
Geoffrey Negiar
Michael W. Mahoney
Aditi S. Krishnapriyan
18
28
0
18 Jul 2022
Object Representations as Fixed Points: Training Iterative Refinement Algorithms with Implicit Differentiation
Michael Chang
Thomas L. Griffiths
Sergey Levine
OCL
47
59
0
02 Jul 2022
Stability Verification of Neural Network Controllers using Mixed-Integer Programming
Roland Schwan
Colin N. Jones
Daniel Kuhn
14
24
0
27 Jun 2022
Distributionally Robust End-to-End Portfolio Construction
Giorgio Costa
G. Iyengar
OOD
6
13
0
10 Jun 2022
Dual Decomposition of Convex Optimization Layers for Consistent Attention in Medical Images
Tom Ron
M. Weiler-Sagie
Tamir Hazan
FAtt
MedIm
19
6
0
06 Jun 2022
Learning to Sequence and Blend Robot Skills via Differentiable Optimization
Noémie Jaquier
You Zhou
J. Starke
Tamim Asfour
6
7
0
01 Jun 2022
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
15
21
0
31 May 2022
Neural Lyapunov Differentiable Predictive Control
Sayak Mukherjee
Ján Drgoňa
Aaron Tuor
M. Halappanavar
D. Vrabie
32
12
0
22 May 2022
Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization
Nir Shlezinger
Yonina C. Eldar
Stephen P. Boyd
17
130
0
05 May 2022
Expert-Calibrated Learning for Online Optimization with Switching Costs
Pengfei Li
Jianyi Yang
Shaolei Ren
24
11
0
18 Apr 2022
Gradient boosting for convex cone predict and optimize problems
A. Butler
R. Kwon
18
2
0
14 Apr 2022
Synthesizing Adversarial Visual Scenarios for Model-Based Robotic Control
Shubhankar Agarwal
Sandeep P. Chinchali
AAML
27
4
0
13 Apr 2022
Semi-Discrete Normalizing Flows through Differentiable Tessellation
Ricky T. Q. Chen
Brandon Amos
Maximilian Nickel
22
10
0
14 Mar 2022
Leveraging Randomized Smoothing for Optimal Control of Nonsmooth Dynamical Systems
Quentin Le Lidec
Fabian Schramm
Louis Montaut
Cordelia Schmid
Ivan Laptev
Justin Carpentier
25
24
0
08 Mar 2022
Exploiting Problem Structure in Deep Declarative Networks: Two Case Studies
Stephen Gould
Dylan Campbell
Itzik Ben-Shabat
Chamin Pasidu Hewa Koneputugodage
Zhiwei Xu
20
8
0
24 Feb 2022
Safe Control with Learned Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction methods
Charles Dawson
Sicun Gao
Chuchu Fan
23
228
0
23 Feb 2022
Scalable Decision-Focused Learning in Restless Multi-Armed Bandits with Application to Maternal and Child Health
Kai Wang
Shresth Verma
Aditya Mate
Sanket Shah
Aparna Taneja
N. Madhiwalla
Aparna Hegde
Milind Tambe
14
12
0
02 Feb 2022
Tutorial on amortized optimization
Brandon Amos
OffRL
70
42
0
01 Feb 2022
Learning Differentiable Safety-Critical Control using Control Barrier Functions for Generalization to Novel Environments
Hengbo Ma
Bike Zhang
M. Tomizuka
K. Sreenath
13
23
0
04 Jan 2022
Efficient differentiable quadratic programming layers: an ADMM approach
A. Butler
R. Kwon
18
18
0
14 Dec 2021
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
15
2
0
24 Nov 2021
Multiset-Equivariant Set Prediction with Approximate Implicit Differentiation
Yan Zhang
David W. Zhang
Simon Lacoste-Julien
Gertjan J. Burghouts
Cees G. M. Snoek
BDL
33
21
0
23 Nov 2021
Integrated Conditional Estimation-Optimization
Sirui Chen
Paul Grigas
Zuo‐Jun Max Shen
CML
11
25
0
24 Oct 2021
Sinkformers: Transformers with Doubly Stochastic Attention
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
16
76
0
22 Oct 2021
Adversarial Representation Learning With Closed-Form Solvers
Bashir Sadeghi
Lan Wang
Vishnu Naresh Boddeti
29
5
0
12 Sep 2021
Constrained Feedforward Neural Network Training via Reachability Analysis
Long Kiu Chung
Adam Dai
Derek Knowles
Shreyas Kousik
G. Gao
6
8
0
16 Jul 2021
WAX-ML: A Python library for machine learning and feedback loops on streaming data
Emmanuel Sérié
KELM
AI4CE
10
0
0
11 Jun 2021
To The Point: Correspondence-driven monocular 3D category reconstruction
Filippos Kokkinos
Iasonas Kokkinos
3DH
3DPC
10
24
0
10 Jun 2021
Almost Surely Stable Deep Dynamics
Nathan P. Lawrence
Philip D. Loewen
M. Forbes
Johan U. Backstrom
R. Bhushan Gopaluni
BDL
27
20
0
26 Mar 2021
Differentiable Learning Under Triage
Nastaran Okati
A. De
Manuel Gomez Rodriguez
14
63
0
16 Mar 2021
Strategic Classification Made Practical
Sagi Levanon
Nir Rosenfeld
24
54
0
02 Mar 2021
Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement Learning via Frank-Wolfe Policy Optimization
Jyun-Li Lin
Wei-Ting Hung
Shangtong Yang
Ping-Chun Hsieh
Xi Liu
22
14
0
22 Feb 2021
Solving Inverse Problems With Deep Neural Networks -- Robustness Included?
Martin Genzel
Jan Macdonald
M. März
AAML
OOD
19
101
0
09 Nov 2020
LCollision: Fast Generation of Collision-Free Human Poses using Learned Non-Penetration Constraints
Qingyang Tan
Zherong Pan
Dinesh Manocha
3DH
9
10
0
06 Nov 2020
A Differentiable Relaxation of Graph Segmentation and Alignment for AMR Parsing
Chunchuan Lyu
Shay B. Cohen
Ivan Titov
24
11
0
23 Oct 2020
On the Iteration Complexity of Hypergradient Computation
Riccardo Grazzi
Luca Franceschi
Massimiliano Pontil
Saverio Salzo
18
191
0
29 Jun 2020
Automatically Learning Compact Quality-aware Surrogates for Optimization Problems
Kai Wang
Bryan Wilder
Andrew Perrault
Milind Tambe
17
28
0
18 Jun 2020
Learning Linear Programs from Optimal Decisions
Yingcong Tan
Daria Terekhov
Andrew Delong
14
28
0
16 Jun 2020
Monotone operator equilibrium networks
Ezra Winston
J. Zico Kolter
19
130
0
15 Jun 2020
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
34
85
0
15 Jun 2020
Physarum Powered Differentiable Linear Programming Layers and Applications
Zihang Meng
Sathya Ravi
Vikas Singh
6
5
0
30 Apr 2020
RAFT: Recurrent All-Pairs Field Transforms for Optical Flow
Zachary Teed
Jia Deng
MDE
6
2,545
0
26 Mar 2020
Learning with Differentiable Perturbed Optimizers
Quentin Berthet
Mathieu Blondel
O. Teboul
Marco Cuturi
Jean-Philippe Vert
Francis R. Bach
17
104
0
20 Feb 2020
Lossless Compression of Deep Neural Networks
Thiago Serra
Abhinav Kumar
Srikumar Ramalingam
19
56
0
01 Jan 2020
Learning Convex Optimization Control Policies
Akshay Agrawal
Shane T. Barratt
Stephen P. Boyd
Bartolomeo Stellato
14
66
0
19 Dec 2019
Minimizing a Sum of Clipped Convex Functions
Shane T. Barratt
Guillermo Angeris
Stephen P. Boyd
10
9
0
27 Oct 2019
The Differentiable Cross-Entropy Method
Brandon Amos
Denis Yarats
11
54
0
27 Sep 2019
Previous
1
2
3
Next