ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05503
  4. Cited By
Uncertainty on Asynchronous Time Event Prediction
v1v2 (latest)

Uncertainty on Asynchronous Time Event Prediction

Neural Information Processing Systems (NeurIPS), 2019
13 November 2019
Marin Bilos
Bertrand Charpentier
Stephan Günnemann
    AI4TS
ArXiv (abs)PDFHTML

Papers citing "Uncertainty on Asynchronous Time Event Prediction"

28 / 28 papers shown
Preventing Conflicting Gradients in Neural Marked Temporal Point
  Processes
Preventing Conflicting Gradients in Neural Marked Temporal Point Processes
T. Bosser
Souhaib Ben Taieb
AI4TS
307
0
0
11 Dec 2024
Marked Temporal Bayesian Flow Point Processes
Marked Temporal Bayesian Flow Point Processes
Hui Chen
Xuhui Fan
Hengyu Liu
Longbing Cao
AI4TS
173
0
0
25 Oct 2024
CUQ-GNN: Committee-based Graph Uncertainty Quantification using
  Posterior Networks
CUQ-GNN: Committee-based Graph Uncertainty Quantification using Posterior Networks
C. Damke
Eyke Hüllermeier
BDL
342
0
0
06 Sep 2024
Linear Opinion Pooling for Uncertainty Quantification on Graphs
Linear Opinion Pooling for Uncertainty Quantification on Graphs
C. Damke
Eyke Hüllermeier
369
2
0
06 Jun 2024
Hyper Evidential Deep Learning to Quantify Composite Classification
  Uncertainty
Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty
Changbin Li
Kangshuo Li
Yuzhe Ou
Lance M. Kaplan
A. Jøsang
Jin-Hee Cho
Dong Hyun. Jeong
Feng Chen
UQCVBDLEDL
257
6
0
17 Apr 2024
Uncertainty Regularized Evidential Regression
Uncertainty Regularized Evidential RegressionAAAI Conference on Artificial Intelligence (AAAI), 2024
Kai Ye
Tiejin Chen
Hua Wei
Chen Tang
UQCVEDL
225
11
0
03 Jan 2024
Dirichlet-based Uncertainty Quantification for Personalized Federated
  Learning with Improved Posterior Networks
Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks
Nikita Kotelevskii
Samuel Horváth
Karthik Nandakumar
Martin Takáč
Maxim Panov
UQCVFedMLOOD
185
13
0
18 Dec 2023
Improvements on Uncertainty Quantification for Node Classification via
  Distance-Based Regularization
Improvements on Uncertainty Quantification for Node Classification via Distance-Based RegularizationNeural Information Processing Systems (NeurIPS), 2023
Russell Hart
Linlin Yu
Yifei Lou
Feng Chen
UQCV
243
6
0
10 Nov 2023
Intensity-free Integral-based Learning of Marked Temporal Point
  Processes
Intensity-free Integral-based Learning of Marked Temporal Point Processes
Sishun Liu
Ke Deng
Xiuzhen Zhang
Yongli Ren
267
0
0
04 Aug 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
Uncertainty Estimation for Molecules: Desiderata and MethodsInternational Conference on Machine Learning (ICML), 2023
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
266
11
0
20 Jun 2023
dugMatting: Decomposed-Uncertainty-Guided Matting
dugMatting: Decomposed-Uncertainty-Guided MattingInternational Conference on Machine Learning (ICML), 2023
Jiawei Wu
Changqing Zhang
Zuoyong Li
Huazhu Fu
Xi Peng
Qiufeng Wang
163
6
0
02 Jun 2023
Modeling Events and Interactions through Temporal Processes -- A Survey
Modeling Events and Interactions through Temporal Processes -- A SurveyNeurocomputing (Neurocomputing), 2023
Angelica Liguori
Luciano Caroprese
Marco Minici
Bruno Veloso
Francesco Spinnato
M. Nanni
Giuseppe Manco
João Gama
AI4TS
247
4
0
10 Mar 2023
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Bertrand Charpentier
Chenxiang Zhang
Stephan Günnemann
UQCVOODAI4CE
303
9
0
10 Mar 2023
A Survey on Event Prediction Methods from a Systems Perspective: Bringing Together Disparate Research Areas
A Survey on Event Prediction Methods from a Systems Perspective: Bringing Together Disparate Research AreasACM Computing Surveys (ACM Comput. Surv.), 2023
Janik-Vasily Benzin
Stefanie Rinderle-Ma
AI4TS
366
5
0
08 Feb 2023
Master's Thesis: Out-of-distribution Detection with Energy-based Models
Master's Thesis: Out-of-distribution Detection with Energy-based Models
Sven Elflein
OODD
202
2
0
28 Jan 2023
Modeling the evolution of temporal knowledge graphs with uncertainty
Modeling the evolution of temporal knowledge graphs with uncertainty
Soeren Nolting
Zhen Han
Volker Tresp
136
1
0
12 Jan 2023
Probabilistic Querying of Continuous-Time Event Sequences
Probabilistic Querying of Continuous-Time Event SequencesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Alex Boyd
Yu-Hsuan Chang
Stephan Mandt
Padhraic Smyth
AI4TS
218
4
0
15 Nov 2022
Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal
  Point Processes
Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point ProcessesInternational Conference on Information and Knowledge Management (CIKM), 2022
Govind V Waghmare
Ankur Debnath
Siddhartha Asthana
Aakarsh Malhotra
194
8
0
27 Oct 2022
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement
  Learning
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
Bertrand Charpentier
Ransalu Senanayake
Mykel Kochenderfer
Stephan Günnemann
PERUD
209
31
0
03 Jun 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node
  Classification
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCVBDL
325
104
0
26 Oct 2021
Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEsNeural Information Processing Systems (NeurIPS), 2021
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
202
102
0
25 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning
  Methods For Uncertainty Estimation
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDLUQCVUDEDLPER
335
78
0
06 Oct 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential
  Family Distributions
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCVBDL
267
19
0
10 May 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and ChallengesInformation Fusion (Inf. Fusion), 2020
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Tianpeng Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
957
2,296
0
12 Nov 2020
Event Prediction in the Big Data Era: A Systematic Survey
Event Prediction in the Big Data Era: A Systematic SurveyACM Computing Surveys (ACM CSUR), 2020
Bo Pan
AI4TS
254
65
0
19 Jul 2020
Fast and Flexible Temporal Point Processes with Triangular Maps
Fast and Flexible Temporal Point Processes with Triangular MapsNeural Information Processing Systems (NeurIPS), 2020
Oleksandr Shchur
Nicholas Gao
Marin Bilovs
Stephan Günnemann
257
39
0
22 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCVUDEDLBDL
407
213
0
16 Jun 2020
Intensity-Free Learning of Temporal Point Processes
Intensity-Free Learning of Temporal Point ProcessesInternational Conference on Learning Representations (ICLR), 2019
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
276
200
0
26 Sep 2019
1
Page 1 of 1