Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1911.05503
Cited By
v1
v2 (latest)
Uncertainty on Asynchronous Time Event Prediction
Neural Information Processing Systems (NeurIPS), 2019
13 November 2019
Marin Bilos
Bertrand Charpentier
Stephan Günnemann
AI4TS
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Uncertainty on Asynchronous Time Event Prediction"
28 / 28 papers shown
Preventing Conflicting Gradients in Neural Marked Temporal Point Processes
T. Bosser
Souhaib Ben Taieb
AI4TS
307
0
0
11 Dec 2024
Marked Temporal Bayesian Flow Point Processes
Hui Chen
Xuhui Fan
Hengyu Liu
Longbing Cao
AI4TS
173
0
0
25 Oct 2024
CUQ-GNN: Committee-based Graph Uncertainty Quantification using Posterior Networks
C. Damke
Eyke Hüllermeier
BDL
342
0
0
06 Sep 2024
Linear Opinion Pooling for Uncertainty Quantification on Graphs
C. Damke
Eyke Hüllermeier
369
2
0
06 Jun 2024
Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty
Changbin Li
Kangshuo Li
Yuzhe Ou
Lance M. Kaplan
A. Jøsang
Jin-Hee Cho
Dong Hyun. Jeong
Feng Chen
UQCV
BDL
EDL
257
6
0
17 Apr 2024
Uncertainty Regularized Evidential Regression
AAAI Conference on Artificial Intelligence (AAAI), 2024
Kai Ye
Tiejin Chen
Hua Wei
Chen Tang
UQCV
EDL
225
11
0
03 Jan 2024
Dirichlet-based Uncertainty Quantification for Personalized Federated Learning with Improved Posterior Networks
Nikita Kotelevskii
Samuel Horváth
Karthik Nandakumar
Martin Takáč
Maxim Panov
UQCV
FedML
OOD
185
13
0
18 Dec 2023
Improvements on Uncertainty Quantification for Node Classification via Distance-Based Regularization
Neural Information Processing Systems (NeurIPS), 2023
Russell Hart
Linlin Yu
Yifei Lou
Feng Chen
UQCV
243
6
0
10 Nov 2023
Intensity-free Integral-based Learning of Marked Temporal Point Processes
Sishun Liu
Ke Deng
Xiuzhen Zhang
Yongli Ren
267
0
0
04 Aug 2023
Uncertainty Estimation for Molecules: Desiderata and Methods
International Conference on Machine Learning (ICML), 2023
Tom Wollschlager
Nicholas Gao
Bertrand Charpentier
Mohamed Amine Ketata
Stephan Günnemann
266
11
0
20 Jun 2023
dugMatting: Decomposed-Uncertainty-Guided Matting
International Conference on Machine Learning (ICML), 2023
Jiawei Wu
Changqing Zhang
Zuoyong Li
Huazhu Fu
Xi Peng
Qiufeng Wang
163
6
0
02 Jun 2023
Modeling Events and Interactions through Temporal Processes -- A Survey
Neurocomputing (Neurocomputing), 2023
Angelica Liguori
Luciano Caroprese
Marco Minici
Bruno Veloso
Francesco Spinnato
M. Nanni
Giuseppe Manco
João Gama
AI4TS
247
4
0
10 Mar 2023
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Bertrand Charpentier
Chenxiang Zhang
Stephan Günnemann
UQCV
OOD
AI4CE
303
9
0
10 Mar 2023
A Survey on Event Prediction Methods from a Systems Perspective: Bringing Together Disparate Research Areas
ACM Computing Surveys (ACM Comput. Surv.), 2023
Janik-Vasily Benzin
Stefanie Rinderle-Ma
AI4TS
366
5
0
08 Feb 2023
Master's Thesis: Out-of-distribution Detection with Energy-based Models
Sven Elflein
OODD
202
2
0
28 Jan 2023
Modeling the evolution of temporal knowledge graphs with uncertainty
Soeren Nolting
Zhen Han
Volker Tresp
136
1
0
12 Jan 2023
Probabilistic Querying of Continuous-Time Event Sequences
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Alex Boyd
Yu-Hsuan Chang
Stephan Mandt
Padhraic Smyth
AI4TS
218
4
0
15 Nov 2022
Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes
International Conference on Information and Knowledge Management (CIKM), 2022
Govind V Waghmare
Ankur Debnath
Siddhartha Asthana
Aakarsh Malhotra
194
8
0
27 Oct 2022
Disentangling Epistemic and Aleatoric Uncertainty in Reinforcement Learning
Bertrand Charpentier
Ransalu Senanayake
Mykel Kochenderfer
Stephan Günnemann
PER
UD
209
31
0
03 Jun 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification
Maximilian Stadler
Bertrand Charpentier
Simon Geisler
Daniel Zügner
Stephan Günnemann
UQCV
BDL
325
104
0
26 Oct 2021
Neural Flows: Efficient Alternative to Neural ODEs
Neural Information Processing Systems (NeurIPS), 2021
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
202
102
0
25 Oct 2021
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Dennis Ulmer
Christian Hardmeier
J. Frellsen
BDL
UQCV
UD
EDL
PER
335
78
0
06 Oct 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCV
BDL
267
19
0
10 May 2021
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Information Fusion (Inf. Fusion), 2020
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Tianpeng Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
957
2,296
0
12 Nov 2020
Event Prediction in the Big Data Era: A Systematic Survey
ACM Computing Surveys (ACM CSUR), 2020
Bo Pan
AI4TS
255
65
0
19 Jul 2020
Fast and Flexible Temporal Point Processes with Triangular Maps
Neural Information Processing Systems (NeurIPS), 2020
Oleksandr Shchur
Nicholas Gao
Marin Bilovs
Stephan Günnemann
257
39
0
22 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
408
213
0
16 Jun 2020
Intensity-Free Learning of Temporal Point Processes
International Conference on Learning Representations (ICLR), 2019
Oleksandr Shchur
Marin Bilos
Stephan Günnemann
AI4TS
276
200
0
26 Sep 2019
1
Page 1 of 1