ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.06987
  4. Cited By
Faster AutoAugment: Learning Augmentation Strategies using
  Backpropagation

Faster AutoAugment: Learning Augmentation Strategies using Backpropagation

European Conference on Computer Vision (ECCV), 2019
16 November 2019
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
ArXiv (abs)PDFHTML

Papers citing "Faster AutoAugment: Learning Augmentation Strategies using Backpropagation"

49 / 99 papers shown
Title
Augmentation-Free Graph Contrastive Learning with Performance Guarantee
Augmentation-Free Graph Contrastive Learning with Performance Guarantee
Haonan Wang
Jieyu Zhang
Qi Zhu
Wei Huang
204
31
0
11 Apr 2022
A Survey of Robust 3D Object Detection Methods in Point Clouds
A Survey of Robust 3D Object Detection Methods in Point Clouds
Walter Zimmer
E. Erçelik
Xingcheng Zhou
Xavier Jair Diaz Ortiz
Alois C. Knoll
3DPC
262
22
0
31 Mar 2022
Deep AutoAugment
Deep AutoAugmentInternational Conference on Learning Representations (ICLR), 2022
Yu Zheng
Zikai Zhang
Shen Yan
Mi Zhang
ViT
267
29
0
11 Mar 2022
TeachAugment: Data Augmentation Optimization Using Teacher Knowledge
TeachAugment: Data Augmentation Optimization Using Teacher KnowledgeComputer Vision and Pattern Recognition (CVPR), 2022
Teppei Suzuki
ViT
252
61
0
25 Feb 2022
What's Cracking? A Review and Analysis of Deep Learning Methods for
  Structural Crack Segmentation, Detection and Quantification
What's Cracking? A Review and Analysis of Deep Learning Methods for Structural Crack Segmentation, Detection and Quantification
Jacob König
M. Jenkins
M. Mannion
P. Barrie
Gordon Morison
211
17
0
08 Feb 2022
Crafting Better Contrastive Views for Siamese Representation Learning
Crafting Better Contrastive Views for Siamese Representation LearningComputer Vision and Pattern Recognition (CVPR), 2022
Xiang Peng
Kai Wang
Zheng Hua Zhu
Mang Wang
Yang You
SSL
288
120
0
07 Feb 2022
Deep invariant networks with differentiable augmentation layers
Deep invariant networks with differentiable augmentation layersNeural Information Processing Systems (NeurIPS), 2022
Cédric Rommel
Thomas Moreau
Alexandre Gramfort
OOD
356
10
0
04 Feb 2022
Adversarial Masking for Self-Supervised Learning
Adversarial Masking for Self-Supervised LearningInternational Conference on Machine Learning (ICML), 2022
Yuge Shi
N. Siddharth
Juil Sock
Adam R. Kosiorek
SSL
423
99
0
31 Jan 2022
Learning Graph Augmentations to Learn Graph Representations
Learning Graph Augmentations to Learn Graph Representations
Kaveh Hassani
Amir Hosein Khas Ahmadi
192
24
0
24 Jan 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced DataNeural Information Processing Systems (NeurIPS), 2022
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
175
80
0
04 Jan 2022
Augment & Valuate : A Data Enhancement Pipeline for Data-Centric AI
Augment & Valuate : A Data Enhancement Pipeline for Data-Centric AI
Youngjune Lee
Oh Joon Kwon
Haejun Lee
Joonyoung Kim
Kangwook Lee
Kee-Eung Kim
165
11
0
07 Dec 2021
Object-Aware Cropping for Self-Supervised Learning
Object-Aware Cropping for Self-Supervised Learning
Shlok Kumar Mishra
Anshul B. Shah
Ankan Bansal
Abhyuday N. Jagannatha
Janit Anjaria
Abhishek Sharma
David Jacobs
Dilip Krishnan
SSL
393
27
0
01 Dec 2021
Challenges of Adversarial Image Augmentations
Challenges of Adversarial Image Augmentations
Arno Blaas
Xavier Suau
Jason Ramapuram
N. Apostoloff
Luca Zappella
AAML
94
4
0
24 Nov 2021
Learning Augmentation Distributions using Transformed Risk Minimization
Learning Augmentation Distributions using Transformed Risk Minimization
Evangelos Chatzipantazis
Stefanos Pertigkiozoglou
Kostas Daniilidis
Guang Cheng
288
17
0
16 Nov 2021
Contrastive Representation Learning with Trainable Augmentation Channel
Contrastive Representation Learning with Trainable Augmentation Channel
Masanori Koyama
Kentaro Minami
Takeru Miyato
Y. Gal
148
1
0
15 Nov 2021
Dynamic Data Augmentation with Gating Networks for Time Series
  Recognition
Dynamic Data Augmentation with Gating Networks for Time Series RecognitionInternational Conference on Pattern Recognition (ICPR), 2021
Daisuke Oba
Shinnosuke Matsuo
Brian Kenji Iwana
AI4TS
194
1
0
05 Nov 2021
Learning Partial Equivariances from Data
Learning Partial Equivariances from Data
David W. Romero
Suhas Lohit
334
44
0
19 Oct 2021
DAAS: Differentiable Architecture and Augmentation Policy Search
DAAS: Differentiable Architecture and Augmentation Policy Search
Xiaoxing Wang
Xiangxiang Chu
Junchi Yan
Xiaokang Yang
176
5
0
30 Sep 2021
AutoGCL: Automated Graph Contrastive Learning via Learnable View
  Generators
AutoGCL: Automated Graph Contrastive Learning via Learnable View Generators
Yihang Yin
Qingzhong Wang
Siyu Huang
Haoyi Xiong
Xiang Zhang
186
186
0
21 Sep 2021
Text AutoAugment: Learning Compositional Augmentation Policy for Text
  Classification
Text AutoAugment: Learning Compositional Augmentation Policy for Text ClassificationConference on Empirical Methods in Natural Language Processing (EMNLP), 2021
Shuhuai Ren
Jinchao Zhang
Lei Li
Xu Sun
Jie Zhou
138
35
0
01 Sep 2021
Augmentation Pathways Network for Visual Recognition
Augmentation Pathways Network for Visual RecognitionIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Yalong Bai
Mohan Zhou
Wei Zhang
Bowen Zhou
Tao Mei
101
4
0
26 Jul 2021
Adversarial Reinforced Instruction Attacker for Robust Vision-Language
  Navigation
Adversarial Reinforced Instruction Attacker for Robust Vision-Language NavigationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Bingqian Lin
Yi Zhu
Yanxin Long
Xiaodan Liang
QiXiang Ye
Liang Lin
AAML
198
20
0
23 Jul 2021
An overview of mixing augmentation methods and augmentation strategies
An overview of mixing augmentation methods and augmentation strategiesArtificial Intelligence Review (AIR), 2021
Dominik Lewy
Jacek Mańdziuk
180
72
0
21 Jul 2021
CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG
  Signals
CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG SignalsInternational Conference on Learning Representations (ICLR), 2021
Cédric Rommel
Thomas Moreau
Joseph Paillard
Alexandre Gramfort
250
45
0
25 Jun 2021
ParticleAugment: Sampling-Based Data Augmentation
ParticleAugment: Sampling-Based Data Augmentation
Alexander Tsaregorodtsev
Vasileios Belagiannis
159
5
0
16 Jun 2021
Rotating spiders and reflecting dogs: a class conditional approach to
  learning data augmentation distributions
Rotating spiders and reflecting dogs: a class conditional approach to learning data augmentation distributions
Scott Mahan
Henry Kvinge
T. Doster
OOD
92
3
0
07 Jun 2021
RegMix: Data Mixing Augmentation for Regression
RegMix: Data Mixing Augmentation for Regression
Seonghyeon Hwang
Steven Euijong Whang
UQCV
192
12
0
07 Jun 2021
Adaptive Test-Time Augmentation for Low-Power CPU
Adaptive Test-Time Augmentation for Low-Power CPU
Luca Mocerino
R. G. Rizzo
Valentino Peluso
A. Calimera
Enrico Macii
TTA
125
4
0
13 May 2021
Contrastive Learning with Stronger Augmentations
Contrastive Learning with Stronger AugmentationsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Tianlin Li
Guo-Jun Qi
CLL
276
285
0
15 Apr 2021
Direct Differentiable Augmentation Search
Direct Differentiable Augmentation SearchIEEE International Conference on Computer Vision (ICCV), 2021
Aoming Liu
Zehao Huang
Zhiwu Huang
Naiyan Wang
228
44
0
09 Apr 2021
DivAug: Plug-in Automated Data Augmentation with Explicit Diversity
  Maximization
DivAug: Plug-in Automated Data Augmentation with Explicit Diversity MaximizationIEEE International Conference on Computer Vision (ICCV), 2021
Zirui Liu
Haifeng Jin
Ting-Hsiang Wang
Kaixiong Zhou
Helen Zhou
186
23
0
26 Mar 2021
Local Patch AutoAugment with Multi-Agent Collaboration
Local Patch AutoAugment with Multi-Agent CollaborationIEEE transactions on multimedia (IEEE Trans. Multimedia), 2021
Shiqi Lin
Tao Yu
Ruoyu Feng
Xin Li
Xin Jin
Zhibo Chen
177
16
0
20 Mar 2021
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable
  Probabilistic Implicit Differentiation
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable Probabilistic Implicit DifferentiationComputer Vision and Pattern Recognition (CVPR), 2021
Denis A. Gudovskiy
Luca Rigazio
Shun Ishizaka
Kazuki Kozuka
Sotaro Tsukizawa
NoLa
121
23
0
10 Mar 2021
Searching for Alignment in Face Recognition
Searching for Alignment in Face RecognitionAAAI Conference on Artificial Intelligence (AAAI), 2021
Xiaqing Xu
Qiang Meng
Yunxiao Qin
Jianzhu Guo
Chenxu Zhao
Feng Zhou
Zhen Lei
CVBM
169
18
0
10 Feb 2021
ResizeMix: Mixing Data with Preserved Object Information and True Labels
ResizeMix: Mixing Data with Preserved Object Information and True Labels
Jie Qin
Jiemin Fang
Qian Zhang
Wenyu Liu
Xingang Wang
Xinggang Wang
397
97
0
21 Dec 2020
Joint Search of Data Augmentation Policies and Network Architectures
Joint Search of Data Augmentation Policies and Network Architectures
Taiga Kashima
Yoshihiro Yamada
Shunta Saito
3DPC
179
5
0
17 Dec 2020
Differentiable Data Augmentation with Kornia
Differentiable Data Augmentation with Kornia
Jian Shi
Edgar Riba
Dmytro Mishkin
Francesc Moreno
Anguelos Nicolaou
108
7
0
19 Nov 2020
Learning Invariances in Neural Networks
Learning Invariances in Neural Networks
Gregory W. Benton
Marc Finzi
Pavel Izmailov
A. Wilson
186
76
0
22 Oct 2020
Does Data Augmentation Benefit from Split BatchNorms
Does Data Augmentation Benefit from Split BatchNorms
Amil Merchant
Barret Zoph
E. D. Cubuk
129
9
0
15 Oct 2020
WeMix: How to Better Utilize Data Augmentation
WeMix: How to Better Utilize Data Augmentation
Yi Tian Xu
Asaf Noy
Ming Lin
Qi Qian
Hao Li
Rong Jin
169
18
0
03 Oct 2020
Encoding Robustness to Image Style via Adversarial Feature Perturbations
Encoding Robustness to Image Style via Adversarial Feature PerturbationsNeural Information Processing Systems (NeurIPS), 2020
Manli Shu
Zuxuan Wu
Micah Goldblum
Tom Goldstein
AAMLOOD
190
22
0
18 Sep 2020
Weight-Sharing Neural Architecture Search: A Battle to Shrink the
  Optimization Gap
Weight-Sharing Neural Architecture Search: A Battle to Shrink the Optimization Gap
Lingxi Xie
Xin Chen
Kaifeng Bi
Longhui Wei
Yuhui Xu
...
Lanfei Wang
Anxiang Xiao
Jianlong Chang
Xiaopeng Zhang
Qi Tian
ViT
367
117
0
04 Aug 2020
Learning Data Augmentation with Online Bilevel Optimization for Image
  Classification
Learning Data Augmentation with Online Bilevel Optimization for Image Classification
Saypraseuth Mounsaveng
I. Laradji
Ismail Ben Ayed
David Vazquez
M. Pedersoli
100
38
0
25 Jun 2020
Meta Approach to Data Augmentation Optimization
Meta Approach to Data Augmentation OptimizationIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2020
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
170
40
0
14 Jun 2020
On the Generalization Effects of Linear Transformations in Data
  Augmentation
On the Generalization Effects of Linear Transformations in Data AugmentationInternational Conference on Machine Learning (ICML), 2020
Sen Wu
Hongyang R. Zhang
Gregory Valiant
Christopher Ré
281
87
0
02 May 2020
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and
  Data Augmentation
Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation
Sajad Norouzi
David J. Fleet
Mohammad Norouzi
VLMDRL
143
3
0
09 Apr 2020
Generative Latent Implicit Conditional Optimization when Learning from
  Small Sample
Generative Latent Implicit Conditional Optimization when Learning from Small Sample
Idan Azuri
D. Weinshall
VLMCLL
236
4
0
31 Mar 2020
Circumventing Outliers of AutoAugment with Knowledge Distillation
Circumventing Outliers of AutoAugment with Knowledge DistillationEuropean Conference on Computer Vision (ECCV), 2020
Longhui Wei
Anxiang Xiao
Lingxi Xie
Xin Chen
Xiaopeng Zhang
Qi Tian
153
66
0
25 Mar 2020
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-ArtKnowledge-Based Systems (KBS), 2019
Xin He
Kaiyong Zhao
Xiaowen Chu
781
1,663
0
02 Aug 2019
Previous
12