Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1912.02762
Cited By
v1
v2 (latest)
Normalizing Flows for Probabilistic Modeling and Inference
Journal of machine learning research (JMLR), 2019
5 December 2019
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Normalizing Flows for Probabilistic Modeling and Inference"
50 / 1,115 papers shown
Multivariate Scenario Generation of Day-Ahead Electricity Prices using Normalizing Flows
Applied Energy (Appl. Energy), 2023
Hannes Hilger
D. Witthaut
Manuel Dahmen
L. R. Gorjão
Julius Trebbien
Eike Cramer
216
9
0
23 Nov 2023
Touring sampling with pushforward maps
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2023
Vivien A. Cabannes
Charles Arnal
147
0
0
23 Nov 2023
Generative Machine Learning for Multivariate Equity Returns
International Conference on AI in Finance (ICAF), 2023
Ruslan Tepelyan
Achintya Gopal
AIFin
SyDa
185
8
0
21 Nov 2023
Alpha Zero for Physics: Application of Symbolic Regression with Alpha Zero to find the analytical methods in physics
Journal of the Physical Society of Japan (JPSJ), 2023
Yoshihiro Michishita
AI4CE
320
3
0
21 Nov 2023
Variational Elliptical Processes
Maria B˙ankestad
Jens Sjölund
Jalil Taghia
Thomas B. Schon
250
2
0
21 Nov 2023
Gaussian Interpolation Flows
Yuan Gao
Jianxia Huang
Yuling Jiao
AI4CE
329
11
0
20 Nov 2023
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference
Marvin Schmitt
Stefan T. Radev
Paul-Christian Bürkner
378
6
0
17 Nov 2023
Self-Supervised Disentanglement by Leveraging Structure in Data Augmentations
Cian Eastwood
Julius von Kügelgen
Linus Ericsson
Diane Bouchacourt
Pascal Vincent
Bernhard Schölkopf
Mark Ibrahim
248
13
0
15 Nov 2023
TURBO: The Swiss Knife of Auto-Encoders
Entropy (Entropy), 2023
Guillaume Quétant
Yury Belousov
Vitaliy Kinakh
Svyatoslav Voloshynovskiy
145
6
0
11 Nov 2023
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Conference on Robot Learning (CoRL), 2023
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
249
7
0
11 Nov 2023
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
193
3
0
09 Nov 2023
Conditional Optimal Transport on Function Spaces
Bamdad Hosseini
Alexander W. Hsu
Amirhossein Taghvaei
OT
430
23
0
09 Nov 2023
The voraus-AD Dataset for Anomaly Detection in Robot Applications
Jan Thiess Brockmann
Marco Rudolph
Bodo Rosenhahn
Bastian Wandt
248
16
0
08 Nov 2023
Riemannian Laplace Approximation with the Fisher Metric
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Hanlin Yu
Marcelo Hartmann
Bernardo Williams
Mark Girolami
Arto Klami
552
7
0
05 Nov 2023
Structured Neural Networks for Density Estimation and Causal Inference
Neural Information Processing Systems (NeurIPS), 2023
Asic Q. Chen
Ruian Shi
Xiang Gao
Ricardo Baptista
Rahul G. Krishnan
CML
TPM
227
9
0
03 Nov 2023
Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs
Nonlinear Analysis (Nonlinear Anal.), 2023
A. Scagliotti
Sara Farinelli
384
7
0
02 Nov 2023
Minimizing Convex Functionals over Space of Probability Measures via KL Divergence Gradient Flow
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Rentian Yao
Linjun Huang
Yun Yang
287
6
0
01 Nov 2023
Flexible Tails for Normalising Flows, with Application to the Modelling of Financial Return Data
Tennessee Hickling
Dennis Prangle
230
5
0
01 Nov 2023
Uncertainty quantification and out-of-distribution detection using surjective normalizing flows
Simon Dirmeier
Ye Hong
Yanan Xin
Fernando Pérez-Cruz
UQCV
217
1
0
01 Nov 2023
Inference of CO2 flow patterns -- a feasibility study
A. Gahlot
Huseyin Tuna Erdinc
Rafael Orozco
Ziyi Yin
Felix J. Herrmann
188
7
0
01 Nov 2023
Towards Practical Non-Adversarial Distribution Matching
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Ziyu Gong
Ben Usman
Han Zhao
David I. Inouye
OOD
261
2
0
30 Oct 2023
Predicting mutational effects on protein-protein binding via a side-chain diffusion probabilistic model
Neural Information Processing Systems (NeurIPS), 2023
Shiwei Liu
Tian Zhu
Milong Ren
Chungong Yu
Dongbo Bu
Haicang Zhang
DiffM
142
23
0
30 Oct 2023
Rare Event Probability Learning by Normalizing Flows
Zhenggqi Gao
Dinghuai Zhang
Luca Daniel
Duane S. Boning
164
3
0
29 Oct 2023
Distributed Nonlinear Filtering using Triangular Transport Maps
American Control Conference (ACC), 2023
Daniel Grange
Ricardo Baptista
Amirhossein Taghvaei
Allen R. Tannenbaum
Sean Phillips
230
1
0
29 Oct 2023
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Neural Information Processing Systems (NeurIPS), 2023
Jianlong Wu
Stephan Eckstein
Marcel Nutz
Stephan Mandt
220
16
0
29 Oct 2023
Adaptive importance sampling for Deep Ritz
Communication on Applied Mathematics and Computation (CAMC), 2023
Xiaoliang Wan
Tao Zhou
Yuancheng Zhou
192
4
0
26 Oct 2023
Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration
Neural Information Processing Systems (NeurIPS), 2023
Longlin Yu
Tianyu Xie
Yu Zhu
Tong Yang
Xiangyu Zhang
Cheng Zhang
DiffM
232
14
0
26 Oct 2023
MixerFlow: MLP-Mixer meets Normalising Flows
Eshant English
Matthias Kirchler
Yingzhen Li
TPM
232
0
0
25 Oct 2023
Free-form Flows: Make Any Architecture a Normalizing Flow
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Felix Dräxler
Peter Sorrenson
Lea Zimmermann
Armand Rousselot
Ullrich Kothe
TPM
DRL
AI4CE
BDL
332
21
0
25 Oct 2023
Joint Distributional Learning via Cramer-Wold Distance
SeungHwan An
Jong-June Jeon
259
0
0
25 Oct 2023
A comprehensive survey on deep active learning in medical image analysis
Haoran Wang
Q. Jin
Shiman Li
Siyu Liu
Manning Wang
Zhijian Song
VLM
402
75
0
22 Oct 2023
Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability
Maciej Falkiewicz
Naoya Takeishi
Imahn Shekhzadeh
Antoine Wehenkel
Arnaud Delaunoy
Gilles Louppe
Alexandros Kalousis
236
9
0
20 Oct 2023
Canonical normalizing flows for manifold learning
Neural Information Processing Systems (NeurIPS), 2023
Kyriakos Flouris
E. Konukoglu
DRL
480
14
0
19 Oct 2023
Fast Parameter Inference on Pulsar Timing Arrays with Normalizing Flows
Physical Review Letters (PRL), 2023
David Shih
M. Freytsis
Stephen R. Taylor
J. A. Dror
Nolan Smyth
179
6
0
18 Oct 2023
From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling
Aneesh Komanduri
Xintao Wu
Yongkai Wu
Feng Chen
CML
OOD
471
23
0
17 Oct 2023
Exact nonlinear state estimation
Journal of the Atmospheric Sciences (JAS), 2023
H. Chipilski
323
6
0
17 Oct 2023
Wide Neural Networks as Gaussian Processes: Lessons from Deep Equilibrium Models
Neural Information Processing Systems (NeurIPS), 2023
Tianxiang Gao
Xiaokai Huo
Hailiang Liu
Hongyang Gao
BDL
215
16
0
16 Oct 2023
On the Properties and Estimation of Pointwise Mutual Information Profiles
Paweł Czyż
Frederic Grabowski
Julia E. Vogt
N. Beerenwinkel
Alexander Marx
264
5
0
16 Oct 2023
A Deep Neural Network -- Mechanistic Hybrid Model to Predict Pharmacokinetics in Rat
Florian Führer
Andrea Gruber
Holger Diedam
A. Göller
Stephan Menz
S. Schneckener
353
5
0
13 Oct 2023
Neural Diffusion Models
International Conference on Machine Learning (ICML), 2023
Grigory Bartosh
Dmitry Vetrov
C. A. Naesseth
DiffM
374
15
0
12 Oct 2023
Unraveling the Single Tangent Space Fallacy: An Analysis and Clarification for Applying Riemannian Geometry in Robot Learning
IEEE International Conference on Robotics and Automation (ICRA), 2023
Noémie Jaquier
Leonel Rozo
Tamim Asfour
319
10
0
11 Oct 2023
Learning Many-to-Many Mapping for Unpaired Real-World Image Super-resolution and Downscaling
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Wanjie Sun
Zhenzhong Chen
SupR
266
8
0
08 Oct 2023
A calculus for Markov chain Monte Carlo: studying approximations in algorithms
Rocco Caprio
A. M. Johansen
135
3
0
05 Oct 2023
Simulation-based Inference with the Generalized Kullback-Leibler Divergence
Benjamin Kurt Miller
Marco Federici
Christoph Weniger
Patrick Forré
355
5
0
03 Oct 2023
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
International Conference on Learning Representations (ICLR), 2023
Yuxiao Cheng
Ziqian Wang
Tingxiong Xiao
Qin Zhong
J. Suo
Kunlun He
AI4TS
CML
253
23
0
03 Oct 2023
TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series
International Conference on Learning Representations (ICLR), 2023
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Nicolas Chapados
Alexandre Drouin
AI4TS
281
25
0
02 Oct 2023
Parallel-in-Time Probabilistic Numerical ODE Solvers
Journal of machine learning research (JMLR), 2023
Nathanael Bosch
Adrien Corenflos
F. Yaghoobi
Filip Tronarp
Philipp Hennig
Simo Särkkä
194
6
0
02 Oct 2023
Subtractive Mixture Models via Squaring: Representation and Learning
International Conference on Learning Representations (ICLR), 2023
Lorenzo Loconte
Aleksanteri Sladek
Stefan Mengel
Martin Trapp
Arno Solin
Nicolas Gillis
Antonio Vergari
TPM
431
34
0
01 Oct 2023
Music- and Lyrics-driven Dance Synthesis
Wenjie Yin
Qingyuan Yao
Yi Yu
Hang Yin
Danica Kragic
Mårten Björkman
DiffM
129
0
0
30 Sep 2023
Learning to Transform for Generalizable Instance-wise Invariance
IEEE International Conference on Computer Vision (ICCV), 2023
Yan Liu
Carlos Esteves
Franccois Marelli
Stella X. Yu
OOD
406
3
0
28 Sep 2023
Previous
1
2
3
...
9
10
11
...
21
22
23
Next
Page 10 of 23
Page
of 23
Go