ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02781
  4. Cited By
AugMix: A Simple Data Processing Method to Improve Robustness and
  Uncertainty

AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

5 December 2019
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
    OOD
    UQCV
ArXivPDFHTML

Papers citing "AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty"

46 / 246 papers shown
Title
Consistency-based Active Learning for Object Detection
Consistency-based Active Learning for Object Detection
Weiping Yu
Sijie Zhu
Taojiannan Yang
C. L. P. Chen
ObjD
20
50
0
18 Mar 2021
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
Samuel G. Müller
Frank Hutter
ViT
MQ
16
274
0
18 Mar 2021
Temporal Cluster Matching for Change Detection of Structures from
  Satellite Imagery
Temporal Cluster Matching for Change Detection of Structures from Satellite Imagery
Caleb Robinson
Anthony Ortiz
J. L. Ferres
Brandon R. Anderson
Daniel E. Ho
11
9
0
17 Mar 2021
Limitations of Post-Hoc Feature Alignment for Robustness
Limitations of Post-Hoc Feature Alignment for Robustness
Collin Burns
Jacob Steinhardt
OOD
14
22
0
10 Mar 2021
Consistency Regularization for Adversarial Robustness
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
S. Hwang
Jinwoo Shin
AAML
31
57
0
08 Mar 2021
Perceiver: General Perception with Iterative Attention
Perceiver: General Perception with Iterative Attention
Andrew Jaegle
Felix Gimeno
Andrew Brock
Andrew Zisserman
Oriol Vinyals
João Carreira
VLM
ViT
MDE
48
973
0
04 Mar 2021
Domain Generalization: A Survey
Domain Generalization: A Survey
Kaiyang Zhou
Ziwei Liu
Yu Qiao
Tao Xiang
Chen Change Loy
OOD
AI4CE
63
980
0
03 Mar 2021
Neuron Coverage-Guided Domain Generalization
Neuron Coverage-Guided Domain Generalization
Chris Xing Tian
Haoliang Li
Xiaofei Xie
Yang Liu
Shiqi Wang
23
35
0
27 Feb 2021
Improving Robustness of Learning-based Autonomous Steering Using
  Adversarial Images
Improving Robustness of Learning-based Autonomous Steering Using Adversarial Images
Yu-cui Shen
L. Zheng
Manli Shu
Weizi Li
Tom Goldstein
Ming Lin
AAML
34
6
0
26 Feb 2021
On Interaction Between Augmentations and Corruptions in Natural
  Corruption Robustness
On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness
Eric Mintun
A. Kirillov
Saining Xie
20
89
0
22 Feb 2021
Unbiased Teacher for Semi-Supervised Object Detection
Unbiased Teacher for Semi-Supervised Object Detection
Yen-Cheng Liu
Chih-Yao Ma
Zijian He
Chia-Wen Kuo
Kan Chen
Peizhao Zhang
Bichen Wu
Z. Kira
Peter Vajda
48
472
0
18 Feb 2021
Enhancing Audio Augmentation Methods with Consistency Learning
Enhancing Audio Augmentation Methods with Consistency Learning
Turab Iqbal
Karim Helwani
A. Krishnaswamy
Wenwu Wang
21
4
0
09 Feb 2021
Debiased-CAM to mitigate image perturbations with faithful visual
  explanations of machine learning
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
16
18
0
10 Dec 2020
A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined
  Augmentations Finetuning to Efficiently Improve the Robustness of CNNs
A Self-Supervised Feature Map Augmentation (FMA) Loss and Combined Augmentations Finetuning to Efficiently Improve the Robustness of CNNs
Nikhil Kapoor
C. Yuan
Jonas Löhdefink
Roland S. Zimmermann
Serin Varghese
Fabian Hüger
Nico M. Schmidt
Peter Schlicht
Tim Fingscheidt
AAML
24
4
0
02 Dec 2020
KeepAugment: A Simple Information-Preserving Data Augmentation Approach
KeepAugment: A Simple Information-Preserving Data Augmentation Approach
Chengyue Gong
Dilin Wang
Meng Li
Vikas Chandra
Qiang Liu
25
113
0
23 Nov 2020
An Effective Anti-Aliasing Approach for Residual Networks
An Effective Anti-Aliasing Approach for Residual Networks
C. N. Vasconcelos
Hugo Larochelle
Vincent Dumoulin
Nicolas Le Roux
Ross Goroshin
SupR
25
32
0
20 Nov 2020
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural
  Networks
Latent Adversarial Debiasing: Mitigating Collider Bias in Deep Neural Networks
L. N. Darlow
Stanisław Jastrzębski
Amos Storkey
43
24
0
19 Nov 2020
Robust Pre-Training by Adversarial Contrastive Learning
Robust Pre-Training by Adversarial Contrastive Learning
Ziyu Jiang
Tianlong Chen
Ting-Li Chen
Zhangyang Wang
16
226
0
26 Oct 2020
Learning Loss for Test-Time Augmentation
Learning Loss for Test-Time Augmentation
Ildoo Kim
Younghoon Kim
Sungwoong Kim
OOD
18
90
0
22 Oct 2020
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
26
63
0
19 Oct 2020
Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image
  Classification
Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification
Oren Nuriel
Sagie Benaim
Lior Wolf
28
88
0
09 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded
  Adversarial Examples
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
A Simple but Tough-to-Beat Data Augmentation Approach for Natural
  Language Understanding and Generation
A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation
Dinghan Shen
Ming Zheng
Yelong Shen
Yanru Qu
Weizhu Chen
AAML
21
130
0
29 Sep 2020
EfficientDeRain: Learning Pixel-wise Dilation Filtering for
  High-Efficiency Single-Image Deraining
EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-Efficiency Single-Image Deraining
Qing-Wu Guo
Jingyang Sun
Felix Juefei Xu
L. Ma
Xiaofei Xie
Wei Feng
Yang Liu
8
99
0
19 Sep 2020
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
Puzzle Mix: Exploiting Saliency and Local Statistics for Optimal Mixup
Jang-Hyun Kim
Wonho Choo
Hyun Oh Song
AAML
12
380
0
15 Sep 2020
Shift Equivariance in Object Detection
Shift Equivariance in Object Detection
M. Manfredi
Yu Wang
ObjD
17
18
0
13 Aug 2020
On Robustness and Transferability of Convolutional Neural Networks
On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Lucas Beyer
...
D. Moldovan
Sylvain Gelly
N. Houlsby
Xiaohua Zhai
Mario Lucic
OOD
8
153
0
16 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image
  Classification
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
22
530
0
01 Jul 2020
Improving robustness against common corruptions by covariate shift
  adaptation
Improving robustness against common corruptions by covariate shift adaptation
Steffen Schneider
E. Rusak
L. Eck
Oliver Bringmann
Wieland Brendel
Matthias Bethge
VLM
31
457
0
30 Jun 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution
  Generalization
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
60
1,664
0
29 Jun 2020
Evaluating Prediction-Time Batch Normalization for Robustness under
  Covariate Shift
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift
Zachary Nado
Shreyas Padhy
D. Sculley
Alexander DÁmour
Balaji Lakshminarayanan
Jasper Snoek
OOD
AI4TS
30
238
0
19 Jun 2020
Tent: Fully Test-time Adaptation by Entropy Minimization
Tent: Fully Test-time Adaptation by Entropy Minimization
Dequan Wang
Evan Shelhamer
Shaoteng Liu
Bruno A. Olshausen
Trevor Darrell
OOD
32
53
0
18 Jun 2020
PatchUp: A Feature-Space Block-Level Regularization Technique for
  Convolutional Neural Networks
PatchUp: A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks
Mojtaba Faramarzi
Mohammad Amini
Akilesh Badrinaaraayanan
Vikas Verma
A. Chandar
AAML
19
31
0
14 Jun 2020
An Overview of Deep Semi-Supervised Learning
An Overview of Deep Semi-Supervised Learning
Yassine Ouali
C´eline Hudelot
Myriam Tami
SSL
HAI
19
294
0
09 Jun 2020
Deep Architecture Enhancing Robustness to Noise, Adversarial Attacks,
  and Cross-corpus Setting for Speech Emotion Recognition
Deep Architecture Enhancing Robustness to Noise, Adversarial Attacks, and Cross-corpus Setting for Speech Emotion Recognition
S. Latif
R. Rana
Sara Khalifa
Raja Jurdak
Björn W. Schuller
33
28
0
18 May 2020
A Simple Semi-Supervised Learning Framework for Object Detection
A Simple Semi-Supervised Learning Framework for Object Detection
Kihyuk Sohn
Zizhao Zhang
Chun-Liang Li
Han Zhang
Chen-Yu Lee
Tomas Pfister
21
492
0
10 May 2020
A Survey of Deep Learning for Scientific Discovery
A Survey of Deep Learning for Scientific Discovery
M. Raghu
Erica Schmidt
OOD
AI4CE
35
120
0
26 Mar 2020
On Calibration of Mixup Training for Deep Neural Networks
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
25
6
0
22 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
On Feature Normalization and Data Augmentation
On Feature Normalization and Data Augmentation
Boyi Li
Felix Wu
Ser-Nam Lim
Serge J. Belongie
Kilian Q. Weinberger
13
134
0
25 Feb 2020
Greedy Policy Search: A Simple Baseline for Learnable Test-Time
  Augmentation
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation
Dmitry Molchanov
Alexander Lyzhov
Yuliya Molchanova
Arsenii Ashukha
Dmitry Vetrov
TPM
17
84
0
21 Feb 2020
FixMatch: Simplifying Semi-Supervised Learning with Consistency and
  Confidence
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Kihyuk Sohn
David Berthelot
Chun-Liang Li
Zizhao Zhang
Nicholas Carlini
E. D. Cubuk
Alexey Kurakin
Han Zhang
Colin Raffel
AAML
34
3,464
0
21 Jan 2020
Compounding the Performance Improvements of Assembled Techniques in a
  Convolutional Neural Network
Compounding the Performance Improvements of Assembled Techniques in a Convolutional Neural Network
Jungkyu Lee
Taeryun Won
Tae Kwan Lee
Hyemin Lee
Geonmo Gu
K. Hong
26
57
0
17 Jan 2020
A simple way to make neural networks robust against diverse image
  corruptions
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
19
64
0
16 Jan 2020
Natural Adversarial Examples
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
47
1,417
0
16 Jul 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Previous
12345