Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.05680
Cited By
v1
v2
v3
v4
v5 (latest)
Spectral Convergence of Graph Laplacian and Heat Kernel Reconstruction in
L
∞
L^\infty
L
∞
from Random Samples
11 December 2019
David B. Dunson
Hau‐Tieng Wu
Nan Wu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Spectral Convergence of Graph Laplacian and Heat Kernel Reconstruction in $L^\infty$ from Random Samples"
49 / 49 papers shown
Title
Convergence of Manifold Filter-Combine Networks
David R. Johnson
Joyce A. Chew
Siddharth Viswanath
E. Brouwer
Deanna Needell
Smita Krishnaswamy
Michael Perlmutter
3DPC
71
0
0
18 Oct 2024
Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds
Weichun Xia
Jiaxin Jiang
Lei Shi
44
0
0
18 Oct 2024
Spectral Self-supervised Feature Selection
Daniel Segal
Ofir Lindenbaum
Ariel Jaffe
103
0
0
12 Jul 2024
Temporal label recovery from noisy dynamical data
Y. Khoo
Xin T. Tong
Wanjie Wang
Yuguan Wang
81
2
0
19 Jun 2024
A Manifold Perspective on the Statistical Generalization of Graph Neural Networks
Zhiyang Wang
J. Cerviño
Alejandro Ribeiro
AI4CE
GNN
74
9
0
07 Jun 2024
Nonparametric regression on random geometric graphs sampled from submanifolds
Paul Rosa
Judith Rousseau
126
1
0
31 May 2024
Scalable Bayesian inference for heat kernel Gaussian processes on manifolds
Junhui He
Guoxuan Ma
Jian Kang
Ying Yang
50
0
0
22 May 2024
Nonsmooth Nonparametric Regression via Fractional Laplacian Eigenmaps
Zhaoyang Shi
Krishnakumar Balasubramanian
W. Polonik
81
1
0
22 Feb 2024
Adaptive and non-adaptive minimax rates for weighted Laplacian-eigenmap based nonparametric regression
Zhaoyang Shi
Krishnakumar Balasubramanian
W. Polonik
65
2
0
31 Oct 2023
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
50
4
0
30 Oct 2023
Spectral Neural Networks: Approximation Theory and Optimization Landscape
Chenghui Li
Rishi Sonthalia
Nicolas García Trillos
83
1
0
01 Oct 2023
Continuum Limits of Ollivier's Ricci Curvature on data clouds: pointwise consistency and global lower bounds
Nicolas García Trillos
Melanie Weber
129
4
0
05 Jul 2023
Representing and Learning Functions Invariant Under Crystallographic Groups
Ryan P. Adams
Peter Orbanz
116
4
0
08 Jun 2023
Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
GNN
72
7
0
29 May 2023
Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back
Claudio Battiloro
Zhiyang Wang
Hans Riess
Paolo Di Lorenzo
Alejandro Ribeiro
72
11
0
20 Mar 2023
A Convergence Rate for Manifold Neural Networks
Joyce A. Chew
Deanna Needell
Michael Perlmutter
70
6
0
23 Dec 2022
Convolutional Filtering on Sampled Manifolds
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
65
3
0
20 Nov 2022
Augmentation Invariant Manifold Learning
Shulei Wang
244
1
0
01 Nov 2022
Graph Neural Networks on SPD Manifolds for Motor Imagery Classification: A Perspective from the Time-Frequency Analysis
Ce Ju
Cuntai Guan
107
22
0
25 Oct 2022
Convolutional Neural Networks on Manifolds: From Graphs and Back
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
3DPC
GNN
94
14
0
01 Oct 2022
Learning Globally Smooth Functions on Manifolds
J. Cerviño
Luiz F. O. Chamon
B. Haeffele
René Vidal
Alejandro Ribeiro
99
6
0
01 Oct 2022
Robust Inference of Manifold Density and Geometry by Doubly Stochastic Scaling
Boris Landa
Xiuyuan Cheng
101
6
0
16 Sep 2022
Large data limit of the MBO scheme for data clustering: convergence of the dynamics
Tim Laux
Jona Lelmi
59
8
0
13 Sep 2022
Geometric Scattering on Measure Spaces
Joyce A. Chew
M. Hirn
Smita Krishnaswamy
Deanna Needell
Michael Perlmutter
H. Steach
Siddharth Viswanath
Hau‐Tieng Wu
GNN
230
19
0
17 Aug 2022
Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise
Xiuyuan Cheng
Boris Landa
62
3
0
22 Jun 2022
The Manifold Scattering Transform for High-Dimensional Point Cloud Data
Joyce A. Chew
H. Steach
Siddharth Viswanath
Hau‐Tieng Wu
M. Hirn
Deanna Needell
Smita Krishnaswamy
Michael Perlmutter
3DPC
71
13
0
21 Jun 2022
SpecNet2: Orthogonalization-free spectral embedding by neural networks
Ziyu Chen
Yingzhou Li
Xiuyuan Cheng
54
4
0
14 Jun 2022
Learning Low-Dimensional Nonlinear Structures from High-Dimensional Noisy Data: An Integral Operator Approach
Xiucai Ding
Rongkai Ma
95
9
0
28 Feb 2022
Log-Euclidean Signatures for Intrinsic Distances Between Unaligned Datasets
Tal Shnitzer
Mikhail Yurochkin
Kristjan Greenewald
Justin Solomon
90
6
0
03 Feb 2022
Spatiotemporal Analysis Using Riemannian Composition of Diffusion Operators
Tal Shnitzer
Hau‐Tieng Wu
Ronen Talmon
39
10
0
21 Jan 2022
Minimax Optimal Regression over Sobolev Spaces via Laplacian Eigenmaps on Neighborhood Graphs
Alden Green
Sivaraman Balakrishnan
Robert Tibshirani
117
12
0
14 Nov 2021
Topologically penalized regression on manifolds
Olympio Hacquard
Krishnakumar Balasubramanian
Gilles Blanchard
Clément Levrard
W. Polonik
95
4
0
26 Oct 2021
Inferring Manifolds From Noisy Data Using Gaussian Processes
David B. Dunson
Nan Wu
91
18
0
14 Oct 2021
Clustering dynamics on graphs: from spectral clustering to mean shift through Fokker-Planck interpolation
Katy Craig
Nicolas García Trillos
D. Slepčev
42
6
0
18 Aug 2021
Large sample spectral analysis of graph-based multi-manifold clustering
Nicolas García Trillos
Pengfei He
Chenghui Li
144
6
0
28 Jul 2021
Non-Parametric Manifold Learning
D. Asta
19
0
0
16 Jul 2021
Solving PDEs on Unknown Manifolds with Machine Learning
Senwei Liang
Shixiao W. Jiang
J. Harlim
Haizhao Yang
AI4CE
114
16
0
12 Jun 2021
Stability to Deformations of Manifold Filters and Manifold Neural Networks
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
AAML
50
9
0
07 Jun 2021
Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
65
12
0
03 Jun 2021
Kernel Two-Sample Tests for Manifold Data
Xiuyuan Cheng
Yao Xie
43
9
0
07 May 2021
Eigen-convergence of Gaussian kernelized graph Laplacian by manifold heat interpolation
Xiuyuan Cheng
Nan Wu
122
29
0
25 Jan 2021
Impact of signal-to-noise ratio and bandwidth on graph Laplacian spectrum from high-dimensional noisy point cloud
Xiucai Ding
Hau‐Tieng Wu
119
13
0
21 Nov 2020
Convergence of Graph Laplacian with kNN Self-tuned Kernels
Xiuyuan Cheng
Hau‐Tieng Wu
72
24
0
03 Nov 2020
Graph Based Gaussian Processes on Restricted Domains
David B. Dunson
Hau‐Tieng Wu
Nan Wu
GP
58
25
0
14 Oct 2020
Unlabeled Data Help in Graph-Based Semi-Supervised Learning: A Bayesian Nonparametrics Perspective
D. Sanz-Alonso
Ruiyi Yang
SSL
73
10
0
26 Aug 2020
Airflow recovery from thoracic and abdominal movements using Synchrosqueezing Transform and Locally Stationary Gaussian Process Regression
Whitney K. Huang
Yu-Min Chung
Yu-Bo Wang
J. Mandel
Hau‐Tieng Wu
52
5
0
11 Aug 2020
Lipschitz regularity of graph Laplacians on random data clouds
Jeff Calder
Nicolas García Trillos
M. Lewicka
63
31
0
13 Jul 2020
Data-driven Efficient Solvers for Langevin Dynamics on Manifold in High Dimensions
Yuan Gao
Jiang Liu
Nan Wu
48
12
0
22 May 2020
Scalability and robustness of spectral embedding: landmark diffusion is all you need
Chao Shen
Hau‐Tieng Wu
80
26
0
03 Jan 2020
1